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Flu in Our Society

* Every year
— Millions get infected
— Hundreds of thousands get hospitalized
— Thousands die
* Surveillance and forecasting methods are key
— Planning
— Designing countermeasures
 Only way to directly surveillance flu is through a virological test
— Costly, and very few testing stations

* Instead, we use Influenza like illness (ILI) reported by hospitals
— Symptomaticdata

— ILI = fever (temperature of 100°F [37.8°C] or greater) and a cough
and/or a sore throat without a KNOWN cause other than influenza.

Rodriguez, et al., 2020



Georgia .‘"\
Tech |

Flu Surveillance Systems

« What is weighted influenza like iliness
(wiL1)?
— Department of Health and Human Services (HHS)
divides the country into 10 regions.

« Eachregionhas a separate wiLl incidence
count, which is a weighted average

* 1 national region depicting overall wiLI trend
- Effect of COVID: contamination of COVID in
the flu due to symptomatic similarities

- March 2020: Region 2, 9, 10 initially
emerged as COVID-19 hot-spots

/ U.S. Department of
'*._\ Health & Human Services

Regions

BOs10n
NYC,

. Puwerto Rico

“

U.S. Virgin
lslands

« Region 1-Boston: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermaont.

« Region 2-Mew York: New _'Ierse',r, and the territories Puerto Rico and the Virgin Islands. {Data for territories are not
included in calculations on PeriStats.)

Region 3-Philadephia: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia,

Region 4-Atlanta: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.

Region 5-Chicago: lllinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.

Region &-Dallas: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.

Region 7-Kansas City: Iowa, Kansas, Missouri, and Nebraska.

Region 8-Denver: Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.

Region 9-5an Francisco: .ﬁrizuna, Hawaii, Nevada and the territories American Samoa, Commonwealth of the
Morthern Mariana Islands, Federated States of Micronesia, Guam, Marshall Islands, and Republic of Palau. {Data for territories
are not included in calculations on PeriStats.)

« Region 10-5eattle: Alaska, Idaho, Oregon, and

Rodriguez, et al., 2020 4
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A Novel Forecasting Setting

Symptomatic similarities

between these two illnesses
and change in patient's
behavior affects our current

surveillance systems.

wlLlI counts may be affected
by

— COVID “contamination”

— Shift in healthcare seeking
behavior during the pandemic

This new scenario lead us a
novel forecasting problem:
COVID-ILI forecasting

Rodriguez, et al., 2020

% (Influenza Outpatients)

National emergency
declared

6 Shift in
: healthcare
5 \ / seeking
WAV behavior
4 ) ) SO\

,1':/ A SN
2 >y A / \
/ -—— Current season =

Other seasons

=

0

42 45 48 51 2 5 8 11 14 17 20

Epidemiological week (EW)



Georgia
Tech

How Forecasting COVID-ILI
is Useful?

* Forecasts the actual burden to hospitals
— Helpful for resource allocation and healthcare worker
deployment

e Can also be used to help with indirect COVID
surveillance (Castrofino et al. 2020; Boélle et al.

2020)

— Especially useful at the early stages of the
pandemic, when there were no well-established
surveillance mechanisms for COVID

* Disambiguate trends between historical strains
and new emerging strains during a flu season

Rodriguez, et al., 2020
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Challenges

[-)] ~ co

* Historical data alone
Is inadequate to represen
t the current scenario

 Traditional ILI models are

4 —— Observed
= = Actual future incidences
3 - —— Our Model
|
2 —— Historical ILI
— Forecasting
1 —— | Models
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" COVID-ILI Forecasting

e Given
— Historical wiLI seasons

— Partially observed COVID-
ILl incidence
curve ¥ ={y,y.,..y il
week t for each regionr.

— A set of COVID-related
features observed till
week t for all regions.

 Predict

— Future incidence for next
four observations =+ cfor
each regionr. -

input

Historical wiLl seasons

Observed COVID-ILI Exogenous data

JII"”'\|||M\“

t

' output

Forecasts
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Technical Challenges

* Covid related data is very sparse Exogenous data
e Historical wliLl data is rich but | W |
1111
does not represent any of the FE——
effects of COVID Al
 How to exploit spatial correlation
in exogeneous signals? wiLl (Current and

* How to leverage both the rich Past Seasons)

historical wiLl data and highly
informative sparse features for
COVID-ILI forecasting?

e Historical wlLl and COVID-related
signals are asynchronous

% (Influenza 9utpatients)

42 45 48 51 2 5 8 11 14 17 20
Epidemiological week (EW)
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* Approach

Outline
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“Covid-Augmented ILI Forecasting
Network (CALI-Net)

e Steer an existing historical ILI| model (EpiDeep, KDD 2019)
with new COVID-related signals

* Goal: enable structured knowledge transfer from our
historical ILI model to a spatio-temporal COVID-ILI model

* We use heterogenous transfer learning and knowledge

distillation losses
Historicall!.l model ~ JointLatent | Input Data
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Explo1tmg Learned Representations
from Historical wiLlI

Historical ILI model

Joint Latent | Input Data
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We propose to address this problem as a heterogeneous transfer learning
(HTL) problem, we adapt the HTL framework of Moon and Carbonell, 2017

Knowledge extracted from historical wiLl and from COVID-related signals
are projected to a shared latent space

Use of denoising autoencoder to improve representations

Rodriguez, et al., 2020 13
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COVID-Augmented Exogenous
Model (CAEM)

- Global model with joint modeling of data from
all regions (10 HHS regions + National)

- Region specific embeddings (one-hot encoding +
autoencoder)

- Laplacian regularization exploiting regional inter-
dependencies

- Recurrent architecture to model temporal evolution

COVID related S|gnals :
CAEM

Laplacian

:Region regularizer

l\)/l Dig@ : graph (v >/ N
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CSD HDE;IH

: ' p ‘.._‘,,-}w-'x“/
COVID- ILI | (-

P ol [ /
Social —» 6—
media

Region
Encoding

} Testing
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" Attentive Knowledge Distillation
(KD) Losses

To better structure the knowledge transfer, we propose to

incorporate KD losses; they encourage positive transfer between
the COVID model (CAEM) and the historical model (EpiDeep)

e Attention in the KD losses (Saputra et al. 2019) automatically
prevent negative transfer

Student Student (CAEM)

(CAEM) prediction intermediate representation
mn

1 2 l 2
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e Results and discussion
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Experiment Setup

 We divide the forecasting period in two:

— T1: period of non-seasonal rise of wiLl due to
contamination by COVID-19 (EWs 9-11)

— T2: period when COVID-ILI trend is declining more
in tune with the wiLl pattern (EWs 12-15)

* Metric: RMSE

* Results presented for next incidence
prediction, more in appendix



Georgia
Tech

Datasets

* wiLl data collected by CDC and publicly available
* COVID-related signals collected from multiple public

sources
Table 1: Overview of COVID-Related Exogenous Data.
Type of signal Description Signals Source
(DS1) Line list They are a 1. Confirmed cases: 2. UCI beds: (COVID-Tracking 2020; CDC 2020)

based

direct function
of the disease spread

3. Hospitalizations; 4. People on
ventilation; 5. Recovered; 6. Deaths;
7. Hospitalization rate;

8. ILI ER visits; 9. CLI ER visits

(JHU 2020)

(DS2) Testing
based

Related to social
policy and behavioral
considerations

10. People tested; 11. Negative cases;

12. Emergency facilities reporting;
13. No. of providers;

(COVID-Tracking 2020; CDC 2020)

(DS3) Crowdsourced
symptoms based

Crowdsourced symptomatic
data from personal devices

14. Digital thermometer readings;

(Miller et al. 2018)

(DS4) Social media

Social media activity

15. Health Related Tweets

(Dredze et al. 2014)

Rodriguez, et al., 2020
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Baselines

Recent historical wiLl models (Reich et al. 2019):

- Delta-Density
- Kernel conditional density estimation, a non-parametric
statistical methodology that is a distribution-based variation on
nearest-neighbors regression
- Empirical Bayes
- Model past seasons’ epidemic curves as smoothed versions plus
noise.
- Construct prior for the current season’s epidemic curve by
considering sets of transformations of past seasons’curves

- SARIMA

- Autoregressive Integrated Moving Average model with
seasonality

Also, HIST, a persistence baseline based on weekly average of
the historical seasons
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Experimental Questions

Transfer Learning

 Q1.Is CALI-NET able to achieve successful positive transfer to
model the contamination of wlLl values?

e (Q2.Does CALI-NET prevent negative transfer by automatically
recognizing when wlLlI and COVID-19 trends deviate?

Forecasting Performance

Q3. Does CALI-NET’s emphasis on transfer learning sacrifice overall
performance with respect to state-of-the-art methods?

Ablation Studies

* Q4. How does each facet of CALI-NET affect COVID-ILI forecasting
performance?

Q5. What data signals are most relevant to COVID-ILI forecasting?

Rodriguez, et al., 2020 20
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Transter Learning Results
(compare vs historical ILI model)

Leverage positive transfer Prevent negative transfer
T i
B CALI-NET B CALI-NET

i EpiDeep il EpiDeep

51 5
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Lower . I
N Region Region
Forecasting performance during period of Forecasting performance during period of declining
increasing COVID-ILI leading to unseasonal peak COVID-ILI trend i.e., return to traditional dynamics.
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" Overall Performance: Emphasis in
Adaptation Doesn't Compromise It

e QOverall
Models Do model performance across

Any Region

"

e CALI-NET outperforms
other models in 5 out of

~J

Hum. Ragions of Best Performance

] 11 regions, on par with
’ R DeltaDensity, a SOTA
o | model
Histogram of Number of * CALI-NET yields
Regions where each to competitive
Modells the Best performance across the
PerformingOne entire course T, + T,

Rodriguez, et al., 2020 22
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Focusing on Period T1 (uptake)

Performance Characterization in Period T1

I CALI-MET E HI5T
B DeltaDensity EEE SARIMA
I Emp. Bayes

SRR

Mational
Hegmn

CALI-Net outperforms all models in 9 out of 11 regions for
positive transfer phase T1 where COVID-19 contamination
of wlLl is the greatest.

Rodriguez, et al., 2020 23
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Model Ablation

Table 1: Per-region RMSE performance characterization of the CALI-NET model when different
components of CAEM architecture are deactivated.

Regions | Our Method | CALI-NET w/o GRU | CALI-NET w/o Laplacian TSAPI_NET w/o

egional Recon.
R1 0.9196 22.0574 0.9118 0.9161
R2 2.6869 9.2662 2.6843 2.6977
R3 1.293 13.2952 1.3647 1.2965
R4 1.6605 6.9054 1.7944 1.7345
RS 1.5879 16.1975 1.687 1.6532
R6 2.93 7.8045 3.0516 2.951
R7 2.2805 5.7593 2.4184 2.322
R8 1.3774 14.9026 1.4898 1.3949
R9 1.8225 4.7056 1.8099 1.8714
R10 1.2069 6.2994 1.2578 1.2262
National 1.3308 9.9319 1.4597 1.4141

Rodriguez, et al., 2020
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Effect of Knowledge Distillation

1 wk ahead 2 wk ahead 3 wk ahead 4 wk ahead

R1 ' ] '
R10
R2
R
R4
RS [
R6
R7
R8
R9
Nat. g 00 e

9 10 1N 12 1B W B s 2 B 3 1 1 2 B ¥ 15 $ 10 1 12 B WM

Epidemic Week (EW) Epidemic Week (EW) Epidemic Week (EW) Epidemic Week (EW)

Ratio of RMSE of CALI-NET with vs without
knowledge distillation losses

KD helps improve predictions
KD is not helping

Knowledge distillation (KD) is helpful in most of the
regions/weeks, especially in short term forecasting
and in T2 (i.e., helping to prevent negative transfer)

Rodriguez, et al., 2020

RMSE ratio CALI-NET / No KD
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Data Ablation

5.
H DS1 H DS3
4 DS2 DS4
wl =
073
=
o 2
n Il Il Il “ Il |l
0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 National

Region

DS1: Linelist data

DS3: Crowdsourced symptomatic data

Line list data is the most helpful, followed by crowdsourced
and testing. Social media is the least helpful

Rodriguez, et al., 2020
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Outline

* Conclusionand future work
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Conclusions and Future Work

- We proposed CALI-Net, a novel framework for principled
transfer of relevant knowledge from an existing
forecasting model (based on rich historical data) to a one
relying on relevant but limited recent exogenous signals

- Characterized CALI-Net performance at different stages of
the wiLl season and showcase effectiveness of its transfer
learning capabilities

- Compared CALI-Net to SOTA and showcase comparable
(and in many cases superior) performance of CALI-Net

- Moving forward, we wish to:
- Automatically differentiate outbreaks of COVID and flu

Rodriguez, et al., 2020 28
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Thanks!

Pre-print:
https://arxiv.org/abs/2009.11407

Code:
https://github.com/Adityalab/CALI-Net

Contact:
Alexander Rodriguez
arodriguezc@gatech.edu

Rodriguez, et al., 2020
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