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Motivation & Idea

« Inverse problem: Given a single, time-resolved measurement of a
complex dynamical system, is it possible to reconstruct the higher-
dimensional process driving the dynamics?

e Introduce state-space reconstruction method: reconstruct the d-
dimensional attractor of an unknown dynamical system, given only a
univariate measurement time series.



Background

Suppose that a d -dimensional dynamical system y = f(y, ¢t) occupies an attractor A. The time-
evolving state variable y may be represented abstractly by composition with a flow operator, y(t) =
F oy(tyg) . At any given instant in time, a measurement x(¢) corresponds to composition with the
operator, M, such that x(t) = Moy(t) = Mo (Foy(ty)), where d,, = dimx;. We define the

data matrix X =|x; x, - - x| !

e N : #fmeasurements

« X € RN X T has Hankel structure along its diagonals converted from y

We seek a parametric similarity transformation § = g(x) such that Y ~ Y, where Y €R"*? and

Y eR¥*42 The point set Y = [ley; : ym ! corresponds to a finite-duration sample from

. T
the true attractor A, and the point set Y = [yfy;. - yJTV] refers to the embedding of x at the

same timepoints.



Approach

e Train an AutoEncoder:

Encoder: attractor Y = g(X)

Decoder:

reconstructed input X = g'(Y)

Figure 1: Overview of problem and approach. A univariate time series y1(¢) is observed from a

AE X ’ ( ( X)) multivariate attractor Y = [y1(¢) y2(¢) y3(¢)]. This signal is converted into a time-lagged Hankel

matrix X, which is used to train an autoencoder with the false-nearest-neighbor loss Lrnn. The latent
variables reconstruct the original coordinates.

Qce fiinrtinn-:

n A & 119 A

E(X, X, Y) = ‘ X—X ” +)\£FNN(Y)
Reconstruction Novel spavrsity promoting loss
loss (false nearest neighbor loss)

AE learns an effective embedding
dimension d because of the regularizer



False Nearest Neighbor Loss

e Lpyy — input: hidden layer from AE & € R X L B: batch size L:
latent dimension

« Compute pairwise Euclidean distance of m points of L and sort by

column: D € REXLXB

 Select k nearest neighbor foreachi € m

L Batch averaged activity
_ -9 . -
LrnN= E (1 _Fm)hm_’ in mth latent unit
m=2

Batch-averaged
fraction of false
neighbors not in k
for each latent
index



Models & Datasets

Models:

e LSTM with Ly

o MLP with Ly (L=10)

Baselines:

o MLP with L=1

« AE without Ly

« time-lagged independent component analysis (tICA)
« Eigen-time delay coordinates (ETD)
Datasets (chaotic or quasiperiodic systems):
-Lorenz (3d)

-Rossler (3d)

-Lotka-Volterra ecosystem (10d)

-Torus (3d)

-Pendulum (4d)



Metrics (comparey, Y)

e Point-wise comparison: Euclidean, DTW

« Forecasting: reconstructed Y are the predicted future values of Y

« Local-neighborhood: compare k neighbors of Y,Y

 Attractor dimensionality:

. Topological feature: quantify degree to which Y retain same feature as
Y

 Fractal dimension: quantify similarity of correlation of fractal
dimensions



Results (Evaluating Reconstruction)
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Figure 3: (A) Embeddings produced by the autoencoder with Lgny, trained on only the first
coordinate of each system. (B) For each system, a variety of baseline embeddings are compared to
the original attractor via multiple similarity measures. Hue indicates mean across 5 replicates scaled
by column range, with red boxes indicating column maximum, or values falling within one standard

deviation of it. Because distinct similarity metrics have different dynamic ranges, each column has

been normalized separately to accentuate differences across models (see appendix for tabular values).

Yellow is the higher, LSTM-fnn performs best
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Results (Robustness to noise)
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Figure 4: (A) Embeddings of the stochastic Lorenz dataset with and without the false-nearest-
neighbors regularizer. Replicates correspond to different random initializations of the Brownian noise
force and initial network weights. (B) The cross-mapping forecast accuracy as a function of noise
strength & (with constant 7 = 20). (C) The cross-mapping forecast accuracy versus forecasting
horizon 7 (with constant {§g = 0.5). Standard errors span 5 replicates.
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Results (Case-studies)

Electrocardiogram Old Faithful eruptions Electricity usage Neural spiking

created model of heart quasi periodic attractor daily usage cycle Mouse neuron spike

Figure 6: Embeddings of an electrocardiogram (160 heartbeats), temperature measurements of the
erupting “Old Faithful” geyser in Yellowstone National Park (200 eruptions), average electricity
usage by 321 households (200 days), and neural spiking in a mouse thalamus.
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Motivation & Idea

« Complex loT devices have large multidimensional observations (e.g., power
control in buildings, electrical components in power plants)

« Anomaly detection refers to finding pattern in this data that do not conform to
expected behavior (e.g., device failure)

 Factors to consider in multidimensional anomaly detection:
- Noise: anomaly is subset of observations, and masked in noise dimensions
- Correlation: there may or may not have correlation among the features

- Multimodal: a process can operate in multiple mode (e.g., zone-vacant, zone
comfort-mode)
- Interpretable: understand which observations are contributing to anomaly score



Notations

e X:x(1), x(2), .... : a sequential stream of multidimensional data points

o X(i) : ith data point D- dimensional vector X = {xl, Xs, ...xD}
o Objectives:

- estimate P(x € Normal)

- attribute anomaly score to each x in x

Definition 1. An anomaly is any data point x with a near

zero probability that it was generated by the Normal process:
P(x € Normal) = 0.

« Normal process occupies one or more discrete volumes of unknown shape
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Framework: Detecting anomaly with negative
sampling

e Define 2 class samples:

- Positive class samples: U = {u(1), u(2),..u(M)} > M D-
dimensional data points observed from x, may include small number of
actual anomalies

- Negative class sample: V = {v(1), v(2),...0(N)} - N D-
dimensional data points

e Train a classifier to distinguish between 2 classes
F:RP —0,1]



Assumptions + Prepositions

« Assumptions: U is representative of Normal process and essential to
sample enough to reflect all normal modes of observations

e Propose uniform i.i.d for generating negative samples

Proposition 1. (Uniform Negative Sampling): For each di-
mensiond < D, letlimq = [min (Uy) — 0, max (Uy) + 9]
be a range bounded by the extrema of the positive sample
U extended by a conservative positive length o that extends
limg beyond the normal space. We assume that the sample
size of U is sufficiently large to bound the Normal region.
Choose a negative sample V', by selecting N points uni-
formly i.i.d. bounded by limy for each d < D. In high
dimension, D — oo, false negative sampling error decays

exponentially to zero, regardless of the shape of the Normal
region.

Proposition 2. (Labeled Training Set for Anomaly De-
tection): Given a sufficiently sampled, high-dimensional
dataset from a target process and uniform negative sam-
pling, we can generate a labeled two-class dataset to train
a classifier F for detecting anomalies.

17



Framework: Interpreting anomalies with
integrated gradients

e Integrated Gradient:
- used to show what pixels contribute most to an image classification

- computes and integrates gradients for each dimension from a baseline
point to the observed point

- key step is to select a good baseline (U™ C U)

Proposition 3. (Baseline Set for Anomaly Detection) Points
from the positive sample used to train the anomaly detection
classifier with high Normal class confidence scores, U* C
U :Vycu+F (x) > 1 — € are a sufficient baseline set.



Compute Integrated Gradients

e Choose nearest point from U* to anomalous point x (an
approximation for the closest point of Normal)

e Choose baseline point from U* with minimum Euclidean distance
u* = argmin,, .« {dist(z, u)}

« Apply integrated gradient eq along dth dimension:

Gradient of
the classifier F

Bd(a:)z(u:}—a:d)x/ 0F(m+q><(u*_:c))da

=0 / Ozq

Path variable




Datasets + Baselines

e Baselines:
- One class SVM (OC-SVM): kernel (linear, polynomial, RBF, sigmoid)
- Isolation Forest (ISO): ensemble based

- Deep-SVDD (DSVDD): deep learning adaptation of anomaly detector (replaced
CNN with dense and dropout layers)

- Extended Isolation Forest (EIF): reduce false positive regions in ISO for multimodal
X

Table 1. Summary of Anomaly Detection Datasets.

e Datasets:
DATA SET S1ZE DIM ANOMALY
FOREST COVER (FC) 286,048 10 2,747 (0.9%)
SHUTTLE (SH) 49,097 9 3,511 (7%)
MAMMOGRAPHY (MM) 11,183 6 260 (2.3%)
MULCROSS (MC) 262,144 4 26,214 (10%)
SATELLITE (SA) 6,435 36 2,036 (32%)

SMART BUILDINGS (SB) 60,425 7 1,921 (3.2%)




Experiments: Anomaly Detection

« Anomaly detection Classifiers with negative sampling:

- Random Forest (NS-RF)
- Neural Network (NS-NN)

Table 2. Mean and Standard Deviations of AUC values as % for
benchmark datasets and the Smart Buildings dataset. Highlighted

values are the top-scoring detectors based on a 5% significance

i. drop-out layer threshold.
ii. RELU

OCSVM DSVDD ISO EIF NSRF NSNN
FC 53420 69+7  85+4 9341 80+2 86+4
_ PP SH 9340 8849  96+1 9141 93+7 9645
5 fold Cross validation MM 7147 7846 7742 8642 85+4 8442
- Vaidation set: 20% MC 9040 54417 880 66+4 94+1 99+1
SA 5141 6243 6742 7143 65+4 7343
sB 76+1  60+7 7147 80+4 95+1 93+
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Experiments: Anomaly Interpretation
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Figure 1. Anomaly Interpretation of a Normal point . The left
image shows F'(x) = 1 in the center green circle, and the pro-
portional blame B, against dimensions 005, x008, and 009
as exterior wedges. The right chart displays the stepwise inte-
grated gradients from x at k = O to the nearest baseline u* at
k = 2,000. Since the point is normal, the gradients are very small,

with )~ Bg ~ 0.
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Figure 2. Anomaly Interpretation of an Anomalous point = with
F(z) = 0, Three dimensions (002, 015, and 007) assigned
most of the blame, > ~ By ~ 1. The observed and expected normal

values, x4 (u);), are displayed next to each wedge.

Synthetic dataset: positive sample-> 2500 data points, D-> 16, anomaly->

additional 125 points
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Motivation & Idea

e Estimating feature importance for multivariate time-series data is
challenging
 Saliency maps are faithful visualizing interpretation method

e The authors compare performance over multiple:
- interpretability methods (gradient-based, perturbation-based)
- neural architectures (RNN, TCN, Transfmormers)
- synthetic datasets to capture different spatio-temporal aspects

e Propose Two-step Temporal Saliency Rescaling approach (TSR)



Problem Definition

o Input: A multivariate time-series X = {xl, X5, ...xT} e RVNAT
« Model produces an output S(X) = {SI(X), SH(X), ...SC(X)}, C: #classes

 Output: For a target class c, saliency method finds relevance R(X) € RN X Twhich
assign relevance score of each input feature i at time t

Saliency Methods:
1. Gradient-based (Integrated Grad, Smooth Grad, DeeplLift)
2. Perturbation-based (feature occlusion, feature pertubation)

3. Shapley Value Sampling (SVS): approximate shapley value that involves random
permutation of input features



Temporal Saliency Rescaling (TSR)

Algorithm 1: Temporal Saliency Rescaling (TSR)

Given: input X, a baseline interpretation method £(.)

Output: TSR interpretation method RT5%(.)

fort <+ Otol"do

Mask all features at time ¢: X . ; = 0, otherwise X = X
Compute Time-Relevance Score A7 = 37, |R; +(X) — R; «(X)]:

fort < O0to 7 do
for i < O0to N do
if Al“¢ > o then

Mask feature 7 at time t: X ;.. = 0, otherwise X =X;
Compute Feature-Relevance Score A/ “*#*"¢ = Do IRt (X) — Riy(X)

b

else
Feature-Relevance Score A/ “*" — 0;

Compute (time, feature) importance score RTSE = Afeature o Atime .

9
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Datasets & Metrics

« Datsets: 10 time-series datasets, each synthetic dataset generated by

7 different process—> 70 synthetic datasets
e Performance metric:
- Precision (AUP): Are all features BN uii saitie JASL. il Y

identified as salient informative?

- Recall (AUR): Is the saliency
. . Figure 2: Middle box dataset generated by different time series processes. The first row shows how
m et h Od d b I e tO | d e nt | fy d | | each feature changes over time when independently sampled from time series processes. The bottom

row corresponds to the heatmap of each sample where red represents informative features.

Informative features?
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Experiments: Saliency Map Quality

LSTM + Input cell Atten. TCN Transformer LSTM + Input cell Atten. TCN
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Figure 4: Saliency maps produced by Grad, Integrated Gradients, and DeepSHAP for 3 different

models on synthetic data and time series MNIST (white represents high saliency). Saliency seems to Figure 5: Saliency maps when applying the proposed Temporal Saliency Rescaling (TSR) approach.
highlight the correct time step in some cases but fails to identify informative features in a given time.

Features

Features

TSR able to give good quality saliency than normal saliency methods

28



Experiments: Saliency vs Random ranking

Gradient-based Methods Non-Gradient Methods
Rand =~ IG "~ DL — DLS """ Grad ~ " SG GS [ Rand “-- SVS =~ FP_ — " FA FOI
Middle Box Moving Box Positional Box (F) Rare Time Rare Feature Middle Box Moving Box Positional Box (F) Rare Time Rare Feature
10017 3 “ = ";'?;i"";{ "-'hﬁa‘:"\ TN E:\‘ =~ '_:‘Ziifﬁ, ~ = 1007 -‘--'.\-7\\_“ il o' -h_;zfr‘ ‘{»;.‘ CT.H\}\, \ ﬁ-_:\ )—\‘\'&‘A r
] 1 8| ‘_‘ﬁs TN ) Ve P 3 Y \j\ - - i’\ ~ e ﬂ
of W) ¢ W Sy N (@] o 3 i A AR | 8
HH ‘ \ hal \(8 \ \ ’ A 18
60 \ ' H 60 | 1
\ | \ B \ : \ \ \|Z
, : X ) \
> 40 40
O 400 — - — et = - P —— ————r— W{—=== ————p— ———— - —_—
E 100 —:‘-"\v\ -—u—g?’ % ~';'1.;’79'§‘ — . \1 . : -—; N‘ 100 J *(—_ A, = 'M-; —-.z_w“'i_ -~ v{‘
3 0 * i Y w‘\ ! RN 0 B 1 ) L‘ ) \
< \__\A\ \-‘4\ \& \)t) y a \“" \‘l \ a‘
< \ 14 z \ |=
— 60 \ v 0 1
[ \ x ) i i
el \\ \
O 40 Ll 40
100 {=——="ow>; T ATy ———— — ———— 100 T —T ST T4 ——— e ——— et g
A= T % % S e \
N | -~ s
0 N LB = 3 A N \ &
| \ : \[5 : \ * \|8
60 \ \ l i g 0 | \ \ \ \[8
1 )
40 ——r — — — v — 40
0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100
% of Overall Saliency Masked % of Overall Saliency Masked

Figure 6: The effect of masking features identified as salient by different methods against a random
baseline. Gradient-based and non-gradient based saliency methods are shown in the left and right
plots, respectively. The rate of accuracy drop is not consistent; in many cases there is not much
improvement over random baseline.

Accuracy don’t drop every time

29



Experiments: Saliency vs Random ranking
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Figure 7: Precision and Recall distribution box plots, the top row represents overall Precision/Recall,
while the second two rows show Precision/Recall distribution on time and feature axes (a) Distribution
across architectures. (b) Distribution across saliency methods.
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1. Model architecture has largest performance over precision and recall

2. Results donot show clear distinction between saliency methods

3. Methods can identify informative time-steps but fail to identify
informative features (Time and feature domain)

30



Saliency Maps: Image over Multivariate Time-

TCN
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Figure 8: (a) Saliency maps and distribution produced by CNN versus TCN for Middle Box. (b)
Saliency Maps for samples treated as image (CNN) vs. uni-, bi- or multi-variate time series (TCN).
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Evaluation on TSR

Middle Box Moving Box
Saliency Methods | AUPR  AUP AUR AUC | AUPR AUP AUR AUC
Grad 0.331 0.328 0457 6490 | 0.225 0.229 0.394 95.35
DLS 0.344 0.344 0452 68.30 | 0.288 0.288 0.435 94.05
SG 0.294 0.300 0.451 64.00 | 0.241 0.247 0.395 92.90
TSR + Grad 0.399 0381 0471 62.20 | 0.335 0.326 0.456 84.00

Table 1: Results from TCN on Middle Box and Moving Box synthetic datasets. Higher AUPR, AUP,
and AUR values indicate better performance. AUC lower values are better as this indicates that the
rate of accuracy drop is higher.

Summary:

1. Commonly used saliency methods fail to produce high quality interpretations for multivariate time-series
2. They can produce good quality saliency if multivariate time-series treated as image or univariate

3. No clear distinction of performance between multiple saliency methods on multiple metrics

4. TSR has substantial improvement over existing saliency methods
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