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Motivation & Idea
• Inverse problem: Given a single, time-resolved measurement of a 

complex dynamical system, is it possible to reconstruct the higher-
dimensional process driving the dynamics?

• Introduce state-space reconstruction method: reconstruct the d-

dimensional attractor of an unknown dynamical system, given only a 
univariate measurement time series.
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Background

• N : #measurements


•  has Hankel structure along its diagonals converted from y𝑋 ∈ 𝑅𝑁 𝑋 𝑇
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Approach
• Train an AutoEncoder:


Encoder: attractor 

Decoder: 


reconstructed input 


AE: 

Loss function: 

𝑌̄ = 𝑔(𝑋)

 𝑋̄ = 𝑔′￼(𝑌̄ )
𝑋̄ = 𝑔′￼(𝑔(𝑋))
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Reconstruction  
loss

Novel sparsity promoting loss 

(false nearest neighbor loss)

AE learns an effective embedding 
dimension because of the regularizer𝑑𝐸 



False Nearest Neighbor Loss

•   input: hidden layer from AE  B: batch size L: 
latent dimension

• Compute pairwise Euclidean distance of m points of L and sort by 

column: 


• Select k nearest neighbor for each i m

𝐿𝐹𝑁𝑁 → h ∈ 𝑅𝐵 𝑋 𝐿,

𝐷 ∈ 𝑅𝐵 𝑋 𝐿 𝑋 𝐵

  ∈
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Batch-averaged 
fraction of false 
neighbors not in k 
for each latent 
index

Batch averaged activity 
in mth latent unit



Models & Datasets
Models:


• LSTM with 


• MLP with  (L=10)

Baselines: 

• MLP with L=1


• AE without 


• time-lagged independent component analysis (tICA)

• Eigen-time delay coordinates (ETD)

Datasets (chaotic or quasiperiodic systems):

-Lorenz (3d)

-Rossler (3d)

-Lotka-Volterra ecosystem (10d)

-Torus (3d)

-Pendulum (4d)

𝐿𝐹𝑁𝑁

𝐿𝐹𝑁𝑁

𝐿𝐹𝑁𝑁
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Metrics (compare Y, )𝑌̄
• Point-wise comparison: Euclidean, DTW


• Forecasting: reconstructed  are the predicted future values of Y


• Local-neighborhood: compare k neighbors of Y, 

• Attractor dimensionality: 


• Topological feature: quantify degree to which  retain same feature as 
Y

• Fractal dimension: quantify similarity of correlation of fractal 

dimensions

𝑌̄
𝑌̄

𝑌̄
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Results (Evaluating Reconstruction)
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Yellow is the higher, LSTM-fnn performs best



Results (Robustness to noise)
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Results (Case-studies)
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created model of heart quasi periodic attractor daily usage cycle Mouse neuron spike



Outline

• Deep reconstruction of strange attractors from timeseries. Wiliam 
Gilphin. Proceedings of the NeuRIPS 2020. 

• Interpretable, Multidimensional, Multimodal Anomaly Detection 

with Negative Sampling for Detection of Device Failure. John Sipple. 
Proceedings of the 37th ICML, 2020

• Benchmarking Deep Learning Interpretability in Time Series 

Predictions. Aya Abdelsalam Ismail, Mohamed Gunady, Hector 
Corrada Bravo, Soheil Feizi. Proceedings of the NeuRIPS 2020.

13

https://arxiv.org/pdf/2002.05909.pdf
https://arxiv.org/pdf/2007.10088.pdf
https://arxiv.org/pdf/2007.10088.pdf
https://arxiv.org/pdf/2010.13924.pdf
https://arxiv.org/pdf/2010.13924.pdf


Motivation & Idea
• Complex IoT devices have large multidimensional observations (e.g., power 

control in buildings, electrical components in power plants)

• Anomaly detection refers to finding pattern in this data that do not conform to 

expected behavior (e.g., device failure)

• Factors to consider in multidimensional anomaly detection:

 - Noise: anomaly is subset of observations, and masked in noise dimensions

 - Correlation: there may or may not have correlation among the features

 - Multimodal: a process can operate in multiple mode (e.g., zone-vacant, zone 
comfort-mode)

 - Interpretable: understand which observations are contributing to anomaly score
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Notations
• X: x(1), x(2), …. : a sequential stream of multidimensional data points


• x(i) : ith data point D- dimensional vector 

• Objectives:

    - estimate 

    - attribute anomaly score to each  in x


• Normal process occupies one or more discrete volumes of unknown shape

x = {𝑥1,  𝑥2, …𝑥𝐷}

𝑃 (𝑥 ∈ 𝑁𝑜𝑟𝑚𝑎𝑙)
𝑥𝑑
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Framework: Detecting anomaly with negative 
sampling
• Define 2 class samples:


 - Positive class samples: ! M D-
dimensional data points observed from x, may include small number of 
actual anomalies


- Negative class sample: N D- 
dimensional data points 

• Train a classifier to distinguish between 2 classes

U = {𝑢(1),  𝑢(2), …𝑢(𝑀)} 

V = {𝑣(1),  𝑣(2), …𝑣(𝑁)} →  
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Assumptions + Prepositions
• Assumptions: U is representative of Normal process and essential to 

sample enough to reflect all normal modes of observations

• Propose uniform i.i.d for generating negative samples
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Framework: Interpreting anomalies with 
integrated gradients
• Integrated Gradient: 

- used to show what pixels contribute most to an image classification

- computes and integrates gradients for each dimension from a baseline 
point to the observed point


- key step is to select a good baseline ( )𝑈∗ ⊂ 𝑈
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Compute Integrated Gradients

• Choose nearest point from U* to anomalous point x (an 
approximation for the closest point of Normal)

• Choose baseline point from U* with minimum Euclidean distance


• Apply integrated gradient eq along dth dimension:
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Gradient of 
the classifier F

Path variable



Datasets + Baselines
• Baselines:

- One class SVM (OC-SVM): kernel (linear, polynomial, RBF, sigmoid)

- Isolation Forest (ISO): ensemble based

- Deep-SVDD (DSVDD): deep learning adaptation of anomaly detector (replaced 

CNN with dense and dropout layers)

- Extended Isolation Forest (EIF): reduce false positive regions in ISO for multimodal 

X


• Datasets:
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Experiments: Anomaly Detection
• Anomaly detection Classifiers with negative sampling:

- Random Forest (NS-RF)

- Neural Network (NS-NN)

     i. drop-out layer

     ii. RELU


- 5 fold Cross validation

- Vaidation set: 20% 
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Experiments: Anomaly Interpretation
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Motivation & Idea
• Estimating feature importance for multivariate time-series data is 

challenging

• Saliency maps are faithful visualizing interpretation method

• The authors compare performance over multiple:

  - interpretability methods (gradient-based, perturbation-based)

  - neural architectures (RNN, TCN, Transfmormers)

  - synthetic datasets to capture different spatio-temporal aspects

• Propose Two-step Temporal Saliency Rescaling approach (TSR)
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Problem Definition

• Input: A multivariate time-series 


• Model produces an output , C: #classes


• Output: For a target class c, saliency method finds relevance which 
assign relevance score of each input feature i at time t


Saliency Methods:

1. Gradient-based (Integrated Grad, Smooth Grad, DeepLift)

2. Perturbation-based (feature occlusion, feature pertubation)

3. Shapley Value Sampling (SVS): approximate shapley value that involves random 

permutation of input features

X = {𝑥1,  𝑥2, …𝑥𝑇} ∈ 𝑅𝑁 𝑋 𝑇

S(X) = {𝑆1(𝑋),  𝑆2(𝑋), …𝑆𝐶(𝑋)}
R(X) ∈ 𝑅𝑁 𝑋 𝑇
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Temporal Saliency Rescaling (TSR)
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Datasets & Metrics
• Datsets: 10 time-series datasets, each synthetic dataset generated by 

7 different process! 70 synthetic datasets

• Performance metric:

- Precision (AUP): Are all features 

identified as salient informative?

- Recall (AUR): Is the saliency 

method able to identify all 

Informative features?
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Experiments: Saliency Map Quality
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TSR able to give good quality saliency than normal saliency methods



Experiments: Saliency vs Random ranking
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Accuracy don’t drop every time 



Experiments: Saliency vs Random ranking
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1. Model architecture has largest performance over precision and recall

2. Results donot show clear distinction between saliency methods

3. Methods can identify informative time-steps but fail to identify 

informative features (Time and feature domain)



Saliency Maps: Image over Multivariate Time-
series
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Evaluation on TSR
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Summary:

1. Commonly used saliency methods fail to produce high quality interpretations for multivariate time-series

2. They can produce good quality saliency if multivariate time-series treated as image or univariate

3. No clear distinction of performance between multiple saliency methods on multiple metrics

4. TSR has substantial improvement over existing saliency methods


