Data Seminar

07/01/2021



Outline

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin

J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z,
Pan S, Long G, et al. SIGKDD 2020.



Outline

1. Learning to Simulate Complex Physics with Graph Networks.

Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z,
Pan S, Long G, et al. SIGKDD 2020.



\ Motivation & Idea

Motivation:

e Traditional engineering simulators: Expensive to create and use, trade off generality for

accuracy.
e Machine learning simulators: Difficulty in overcoming large state spaces & complex
dynamics.
Ideas:

e Interacting nodes to represent rich physical states.
e Message-passing among nodes to represent complex dynamics.
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Mathematical setup

Time: t_{0}, t {1}, ..., t {K}
Dynamics: XA {t_{0:K}} = XA {t_{0}}, XA {t_{1}},.... XA {t_{K})}

Particles: XA {t_{0}} = X_{0}A {t_{0}}, X_{1}A{t_{0}},.... X_{N}*{t {0}}




Processor

Learned simulator: s (parameters: s_{theta})

The simulator gives an simulation from X {t_{k}} to X*{t_{k+1}}:

Xtet1 = g(Xt)

For each step, they train a set of parameters theta

Hf_step < argy min IEP(th;kH)Ll_Swp(Xt"’“, so(X™)).

Loss measures the RMSE between acceleration between X_{t"{k}} and s_{theta}(X_{t"{k}}).



Experiments : Multiple Materials/Objects.

Experiments showed that this general simulator could simulate multiple materials and objects.
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Video: https://sites.gooale.com/view/learning-to-simulate



https://sites.google.com/view/learning-to-simulate

\ Summary

Use interacting nodes to represent rich physical states.

e Divide the physical system X into N particles.
e Each particle corresponds to one node in the graph.

Message-passing among nodes to represent complex dynamics.

e Edges corresponds to pairwise properties of the corresponding particles.
e One-step loss function to train the learned simulator.
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\ Motivation & Idea

Motivation:

e Existing methods fail to fully exploit latent spatial dependencies between variables.
e GNN have shown high capability in handling relational dependencies.

Ideas:

e Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data.
e Graph convolution model to address the spatial dependencies among variables.
e Temporal convolution module to capture temporal patterns.
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Mathematical setup

Observed multivariate variable X from t_{1} to t_{P} S

X = {Ztlsztza o 9th}

The goal is to predict future values from t_{P+1} to t_{P+Q}

Y = {2¢p,15Ztpyp 0 s ZtP+Q}

Here, the inputs are in the from
X = {Stl, Stza Tt Sl’p}

Where for each t_{i}, we also have D-1 auxiliary features
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Graph learning layer

For graph learning layer, we want to learn an adjacency matrix A adaptively to capture the hidden
relationships.

e Baseline similarity measure between all node pairs: O(n*2) complexity

e Only calculate a subset of nodes in each step to reduce the complexity

Put the top-k similarity node pairs as connected in A, others are not connected.



GC module and TC module

Mix-hop Mix-hop

Graph'convolution layer are designed to learn spatial dependencies. [ Propagation || Propagation
’ Layer Layer

e A & AM{T}: A can be asymmetric.
e Mix-hop propagation layer: Handle information flow over

spatially dependent nodes.

Temporal convolution module to capture temporal patterns.

Dilated Dilated

e Two gates: tanh and sigmoid as gate to control the amount of [§ Inception Inception
. . i Layer Layer
information.

e Dilated inception to handle the signals with inherent periods.




Dilated inception

Filters' with multiple sizes:

e Convolutional networks for 2-D: 1x1, 3x3, 5x5
e For I-D: 1x2, 1x3, 1x6, 1x7... as filters for different periods.

Dilated convolution:

e Without dilation, receptive size for time sequences:

Concatenate

Length = m(c-1)+1

N [1x2 |[1x3 |[1x6 |[1x7 |
o With dilation at rate g, receptive size increase exponentially g

Length = 1+(c-1)(q*m-1)/(g-1)




Experiments : Single Step Forecasting

Single step: Forecast one output value for future time-step

Dataset Solar-Energy Electricity Exchange-Rate

| Horizon Horizon Horizon Horizon
Methods Metrics | 12 24 12 24 12 12

AR RSE 0.8699 0.63 0.0995
CORR 0.5314 0.7519 | 0.8845

RSE 0.6841 0.6146 | 0.1393
CORR 0.7149 0.7891 | 0.8708

RSE 0.7973 0.5995 | 0.1500
CORR 0.5971 0.7909 | 0.8670

RSE 0.4852 0.5633 | 0.1102
CORR 0.8823 0.8300 | 0.8597

LSTNet-skip RSE 0.4643 0.4973 | 0.0864
0.8870 0.8588 | 0.9283

TPA-LSTM 0.4389 0.4765 | 0.0823
0.9081 0.8629 | 0.9439

0.4270 0.4535 | 0.0745
0.9031 0.8810 | 0.9474

MTGNN+sampling 0.4386 0.4537 | 0.0762
0.8990 0.8758 | 0.9467 0.9219

0.9788



Experiments : Multi-step Forecasting

Multi step: Forecast multiple output values future time-step

Horizon 3 Horizon 6 Horizon 12
RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE

METR-LA

DCRNN 538 7.30% | 3.15 6.45 8.80% | 3.60 7.60
STGCN 574 7.62% | 3.47 7.24  9.57% | 4.59 9.40
Graph WaveNet 515 6.90% | 3.07 6.22 837% | 3.53 7.37
ST-MetaNet 517 691% | 3.10 6.28 8.57% | 3.59 7.52
MRA-BGCN 5.12 6.80% | 3.06 6.17 8.30% | 3.49 7.30
GMAN 548 7.25% | 3.07 6.34 835% | 3.40 7.21

MTGNN 518 6.86% | 3.05 6.17 8.19% | 3.49 7.23
MTGNN-+sampling 534 5.18% | 3.11 6.32 8.47% 7.38
PEMS-BAY

DCRNN 2.90% | 1.74

STGCN 2.90% | 1.81

Graph WaveNet 2.73% | 1.63

ST-MetaNet 2.82% | 1.76

MRA-BGCN 2.90% | 1.61

GMAN 2.81% | 1.62

MTGNN 2.77% | 1.65
MTGNN+sampling 2.83% | 1.67



Summary

Use GNN to learn spatial dependencies between variables.
Learn the relationships between the node pairs (variables) to build networks for GNN.

e Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data.
e Graph convolution model to address the spatial dependencies among variables.
e Temporal convolution module to capture temporal patterns.



