
Data Seminar

07/01/2021

Outline

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin
J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z,
Pan S, Long G, et al. SIGKDD 2020.

Outline

1. Learning to Simulate Complex Physics with Graph Networks.
Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z,
Pan S, Long G, et al. SIGKDD 2020.

Motivation & Idea

Motivation:

● Traditional engineering simulators: Expensive to create and use, trade off generality for
accuracy.

● Machine learning simulators: Difficulty in overcoming large state spaces & complex
dynamics.

Ideas:

● Interacting nodes to represent rich physical states.
● Message-passing among nodes to represent complex dynamics.

Framework

Encoder: Embed the particle-based
state representation X as a latent
graph G_{0}.

Decoder: Extracts dynamics
information from the nodes in
G_{m}.

Processor: Update latent graphs as
G_{m+1} = GN^{m+1}(G_{m}).
GN: Graph Network.

Mathematical setup

Time: t_{0}, t_{1}, …, t_{K}

Dynamics: X^{t_{0:K}} = X^{t_{0}}, X^{t_{1}},..., X^{t_{K}}

Particles: X^{t_{0}} = X_{0}^{t_{0}}, X_{1}^{t_{0}},..., X_{N}^{t_{0}}

K timesteps, N particles.

No dot: Position at time t_{k}
One dot: Velocity at time t_{k}
Two dots: Acceleration at time t_{k}

State of particle i at time t_{k}:

Position Past C-step Velocity Particle Feature: fluids, solids...

Processor

Learned simulator: s (parameters: s_{theta})

The simulator gives an simulation from X^{t_{k}} to X^{t_{k+1}}:

For each step, they train a set of parameters theta

Loss measures the RMSE between acceleration between X_{t^{k}} and s_{theta}(X_{t^{k}}).

Experiments : Multiple Materials/Objects.

Experiments showed that this general simulator could simulate multiple materials and objects.

Video: https://sites.google.com/view/learning-to-simulate

https://sites.google.com/view/learning-to-simulate

Summary

Use interacting nodes to represent rich physical states.

● Divide the physical system X into N particles.
● Each particle corresponds to one node in the graph.

Message-passing among nodes to represent complex dynamics.

● Edges corresponds to pairwise properties of the corresponding particles.
● One-step loss function to train the learned simulator.

Outline

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin
J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph
neural networks. Wu Z, Pan S, Long G, et al. SIGKDD 2020.

Motivation & Idea

Motivation:

● Existing methods fail to fully exploit latent spatial dependencies between variables.
● GNN have shown high capability in handling relational dependencies.

Ideas:

● Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data.
● Graph convolution model to address the spatial dependencies among variables.
● Temporal convolution module to capture temporal patterns.

Framework
Learn the graph adjacency matrix: Find hidden association

Avoid gradient vanishing

Graph convolution to learn spatial dependencies Temporal convolution to capture temporal patterns

Mathematical setup

Observed multivariate variable X from t_{1} to t_{P}

The goal is to predict future values from t_{P+1} to t_{P+Q}

Here, the inputs are in the from

Where for each t_{i}, we also have D-1 auxiliary features N: Dimension of the variable
T: Observed time length.
D: Dimension of features

Graph learning layer

For graph learning layer, we want to learn an adjacency matrix A adaptively to capture the hidden
relationships.

● Baseline similarity measure between all node pairs: O(n^2) complexity

● Only calculate a subset of nodes in each step to reduce the complexity

Put the top-k similarity node pairs as connected in A, others are not connected.

GC module and TC module

Graph convolution layer are designed to learn spatial dependencies.

● A & A^{T}: A can be asymmetric.
● Mix-hop propagation layer: Handle information flow over

spatially dependent nodes.

Temporal convolution module to capture temporal patterns.

● Two gates: tanh and sigmoid as gate to control the amount of
information.

● Dilated inception to handle the signals with inherent periods.

Dilated inception

Filters with multiple sizes:

● Convolutional networks for 2-D: 1x1, 3x3, 5x5
● For 1-D: 1x2, 1x3, 1x6, 1x7… as filters for different periods.

Dilated convolution:

● Without dilation, receptive size for time sequences:

Length = m(c-1)+1

● With dilation at rate q, receptive size increase exponentially:

Length = 1+(c-1)(q^m-1)/(q-1)

Experiments : Single Step Forecasting

Single step: Forecast one output value for future time-step

MTGNN+sampling: MTGNN but the network input is sampled a subset of graph each iteration.

Horizon: Target future step
(3/6/12/24 minutes later)

Experiments : Multi-step Forecasting

Multi step: Forecast multiple output values future time-step

MTGNN+sampling: MTGNN but the network input is sampled a subset of graph each iteration.

Horizon: Target future step
(3/6/12/24 minutes later)

Summary

Use GNN to learn spatial dependencies between variables.

Learn the relationships between the node pairs (variables) to build networks for GNN.

● Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data.
● Graph convolution model to address the spatial dependencies among variables.
● Temporal convolution module to capture temporal patterns.

