Data Seminar

07/01/2021

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z, Pan S, Long G, et al. SIGKDD 2020.

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z, Pan S, Long G, et al. SIGKDD 2020.

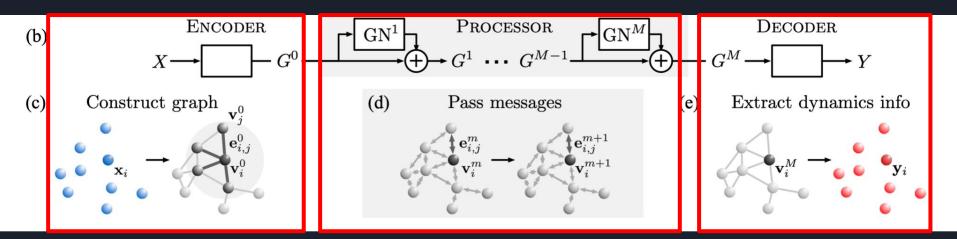
Motivation & Idea

Motivation:

- Traditional engineering simulators: Expensive to create and use, trade off generality for \bullet accuracy.
- Machine learning simulators: Difficulty in overcoming large state spaces & complex ulletdynamics.

Ideas:

- Interacting nodes to represent rich physical states. \bullet
- Message-passing among nodes to represent complex dynamics. ullet



Encoder: Embed the particle-based state representation X as a latent graph G_{0}.

Processor: Update latent graphs as G_{m+1} = GN^{m+1}(G_{m}). GN: Graph Network.

Decoder: Extracts dynamics information from the nodes in G_{m}.

Mathematical setup

Time: $t_{0}, t_{1}, ..., t_{K}$

K timesteps, N particles.

Dynamics: $X^{t_{0:K}} = X^{t_{0}}, X^{t_{1}}, ..., X^{t_{K}}$

Particles: $X^{t_{0}} = X_{0}^{t_{0}}, X_{1}^{t_{0}}, \dots, X_{N}^{t_{0}}$

$$\dot{\mathbf{p}}^{t_{k+1}} = \dot{\mathbf{p}}^{t_k} + \Delta t \cdot \ddot{\mathbf{p}}^{t_k}$$
 $\mathbf{p}^{t_{k+1}} = \mathbf{p}^{t_k} + \Delta t \cdot \dot{\mathbf{p}}^{t_{k+1}}$

No dot: Position at time t_{k} One dot: Velocity at time t_{k} Two dots: Acceleration at time t_{k}

State of particle i at time t_{k}:

$$\mathbf{x}_i^{t_k} = [\mathbf{p}_i^{t_k}, \dot{\mathbf{p}}_i^{t_{k-C+1}}, \dots, \dot{\mathbf{p}}_i^{ar{t}_k}, \mathbf{f}_i]$$

Position

ast C-step Velocit

Particle Feature: fluids, solids..

Learned simulator: s (parameters: s_{theta})

The simulator gives an simulation from $X^{t_{k}}$ to $X^{t_{k+1}}$:

$$\tilde{X}^{t_{k+1}} = s(\tilde{X}^{t_k})$$

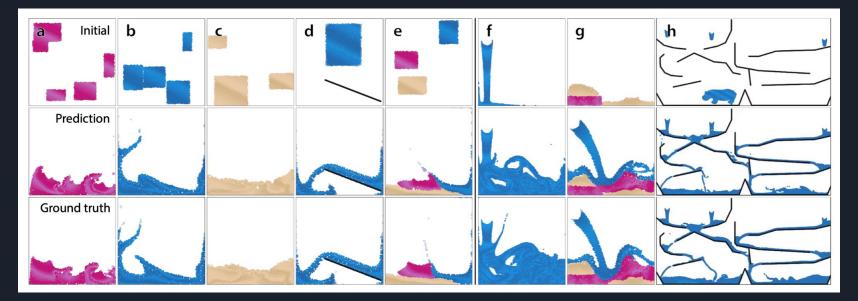
For each step, they train a set of parameters theta

$$\theta_{1\text{-step}}^* \leftarrow \arg_{\theta} \min \mathbb{E}_{\mathbb{P}(\mathbf{X}^{t_{k+1}})} L_{1\text{-step}}(X^{t_{k+1}}, s_{\theta}(X^{t_k})).$$

Loss measures the RMSE between acceleration between $X_{t^{k}}$ and $s_{theta}(X_{t^{k}})$.

Experiments : Multiple Materials/Objects.

Experiments showed that this general simulator could simulate multiple materials and objects.



Video: https://sites.google.com/view/learning-to-simulate

Summary

Use interacting nodes to represent rich physical states.

- Divide the physical system X into N particles.
- Each particle corresponds to one node in the graph.

Message-passing among nodes to represent complex dynamics.

- Edges corresponds to pairwise properties of the corresponding particles.
- One-step loss function to train the learned simulator.

1. Learning to Simulate Complex Physics with Graph Networks. Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. ICML 2020.

2. Connecting the dots: Multivariate time series forecasting with graph neural networks. Wu Z, Pan S, Long G, et al. SIGKDD 2020.

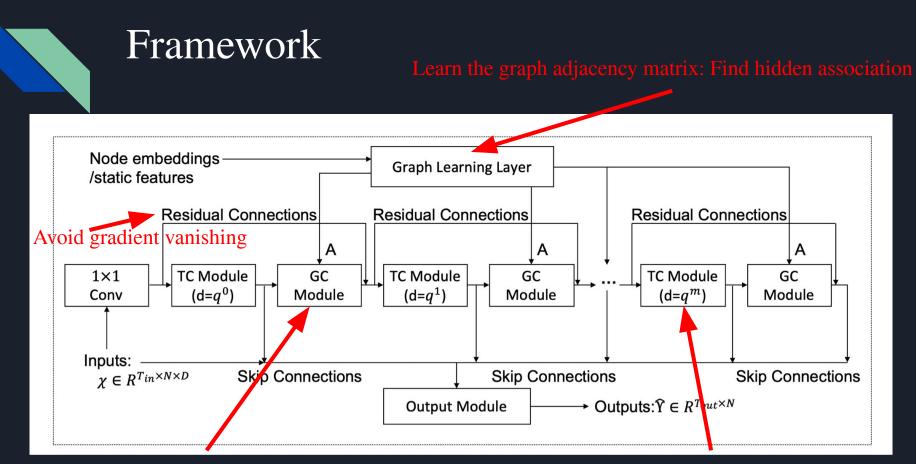
Motivation & Idea

Motivation:

- Existing methods fail to fully exploit latent spatial dependencies between variables.
- GNN have shown high capability in handling relational dependencies. \bullet

Ideas:

- Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data. \bullet
- Graph convolution model to address the spatial dependencies among variables.
- Temporal convolution module to capture temporal patterns. \bullet



Graph convolution to learn spatial dependencies

Temporal convolution to capture temporal patterns

Mathematical setup

Observed multivariate variable X from t_{1} to t_{P}

$$\mathbf{X} = \{\mathbf{z}_{t_1}, \mathbf{z}_{t_2}, \cdots, \mathbf{z}_{t_P}\}$$

The goal is to predict future values from t_{P+1} to t_{P+Q}

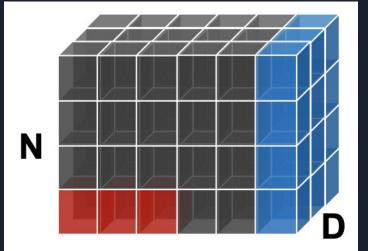
$$\mathbf{Y} = \{\mathbf{z}_{t_{P+1}}, \mathbf{z}_{t_{P+2}}, \cdots, \mathbf{z}_{t_{P+Q}}\}$$

Here, the inputs are in the from

 $\mathbf{S}_{t_i} \in \mathbf{R}^{N \times D}$

$$\mathcal{X} = \{\mathbf{S}_{t_1}, \mathbf{S}_{t_2}, \cdots, \mathbf{S}_{t_P}\}$$

Where for each t_{i} , we also have D-1 auxiliary features



N: Dimension of the variableT: Observed time length.D: Dimension of features

Graph learning layer

For graph learning layer, we want to learn an adjacency matrix A adaptively to capture the hidden relationships.

• Baseline similarity measure between all node pairs: $O(n^2)$ complexity

• Only calculate a subset of nodes in each step to reduce the complexity

Put the top-k similarity node pairs as connected in A, others are not connected.

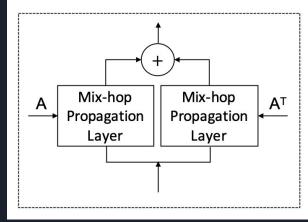
GC module and TC module

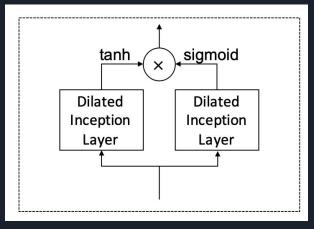
Graph convolution layer are designed to learn spatial dependencies.

- A & A^{T} : A can be asymmetric.
- Mix-hop propagation layer: Handle information flow over spatially dependent nodes.

Temporal convolution module to capture temporal patterns.

- Two gates: tanh and sigmoid as gate to control the amount of information.
- Dilated inception to handle the signals with inherent periods.





Dilated inception

Filters with multiple sizes:

- Convolutional networks for 2-D: 1x1, 3x3, 5x5
- For 1-D: 1x2, 1x3, 1x6, 1x7... as filters for different periods.

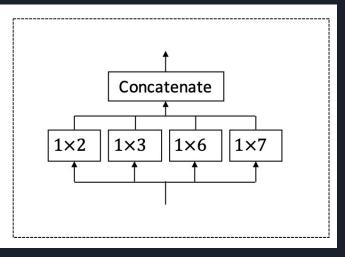
Dilated convolution:

• Without dilation, receptive size for time sequences:

Length = m(c-1)+1

• With dilation at rate q, receptive size increase exponentially:

Length = $1+(c-1)(q^m-1)/(q-1)$



Experiments : Single Step Forecasting

Horizon: Target future step (3/6/12/24 minutes later)

Single step: Forecast one output value for future time-step

Dataset	Dataset		Solar-Energy		I		Tra	Traffic] 1		Electricity		1		Exchange-Rate	
	Ι		Horizon		Ι		Horizon		I		Horizon				Horizon		
Methods	Metrics	3	6	12	24	3	6	12	24	3	6	12	24	3	6	12	24
AR	RSE	0.2435	0.3790	0.5911	0.8699	0.5991	0.6218	0.6252	0.63	0.0995	0.1035	0.1050	0.1054	0.0228	0.0279	0.0353	0.0445
	CORR	0.9710	0.9263	0.8107	0.5314	0.7752	0.7568	0.7544	0.7519	0.8845	0.8632	0.8591	0.8595	0.9734	0.9656	0.9526	0.9357
VARMLP	RSE	0.1922	0.2679	0.4244	0.6841	0.5582	0.6579	0.6023	0.6146	0.1393	0.1620	0.1557	0.1274	0.0265	0.0394	0.0407	0.0578
	CORR	0.9829	0.9655	0.9058	0.7149	0.8245	0.7695	0.7929	0.7891	0.8708	0.8389	0.8192	0.8679	0.8609	0.8725	0.8280	0.7675
GP	RSE	0.2259	0.3286	0.5200	0.7973	0.6082	0.6772	0.6406	0.5995	0.1500	0.1907	0.1621	0.1273	0.0239	0.0272	0.0394	0.0580
	CORR	0.9751	0.9448	0.8518	0.5971	0.7831	0.7406	0.7671	0.7909	0.8670	0.8334	0.8394	0.8818	0.8713	0.8193	0.8484	0.8278
RNN-GRU	RSE	0.1932	0.2628	0.4163	0.4852	0.5358	0.5522	0.5562	0.5633	0.1102	0.1144	0.1183	0.1295	0.0192	0.0264	0.0408	0.0626
	CORR	0.9823	0.9675	0.9150	0.8823	0.8511	0.8405	0.8345	0.8300	0.8597	0.8623	0.8472	0.8651	0.9786	0.9712	0.9531	0.9223
LSTNet-skip	RSE	0.1843	0.2559	0.3254	0.4643	0.4777	0.4893	0.4950	0.4973	0.0864	0.0931	0.1007	0.1007	0.0226	0.0280	0.0356	0.0449
	CORR	0.9843	0.9690	0.9467	0.8870	0.8721	0.8690	0.8614	0.8588	0.9283	0.9135	0.9077	0.9119	0.9735	0.9658	0.9511	0.9354
TPA-LSTM	RSE	0.1803	0.2347	0.3234	0.4389	0.4487	0.4658	0.4641	0.4765	0.0823	0.0916	0.0964	0.1006	0.0174	0.0241	0.0341	0.0444
	CORR	0.9850	0.9742	0.9487	0.9081	0.8812	0.8717	0.8717	0.8629	0.9439	0.9337	0.9250	0.9133	0.9790	0.9709	0.9564	0.9381
MTGNN	RSE	0.1778	0.2348	0.3109	0.4270	0.4162	0.4754	0.4461	0.4535	0.0745	0.0878	0.0916	0.0953	0.0194	0.0259	0.0349	0.0456
	CORR	0.9852	0.9726	0.9509	0.9031	0.8963	0.8667	0.8794	0.8810	0.9474	0.9316	0.9278	0.9234	0.9786	0.9708	0.9551	0.9372
MTGNN+sampling	RSE	0.1875	0.2521	0.3347	0.4386	0.4170	0.4435	0.4469	0.4537	0.0762	0.0862	0.0938	0.0976	0.0212	0.0271	0.0350	0.0454
	CORR	0.9834	0.9687	0.9440	0.8990	0.8960	0.8815	0.8793	0.8758	0.9467	0.9354	0.9261	0.9219	0.9788	0.9704	0.9574	0.9382

MTGNN+sampling: MTGNN but the network input is sampled a subset of graph each iteration.

Experiments : Multi-step Forecasting

Multi step: Forecast multiple output values future time-step

		Horizon	3]	Horizon	6	Horizon 12			
	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	
METR-LA										
DCRNN	2.77	5.38	7.30%	3.15	6.45	8.80%	3.60	7.60	10.50%	
STGCN	2.88	5.74	7.62%	3.47	7.24	9.57%	4.59	9.40	12.70%	
Graph WaveNet	2.69	5.15	6.90%	3.07	6.22	8.37%	3.53	7.37	10.01%	
ST-MetaNet	2.69	5.17	6.91%	3.10	6.28	8.57%	3.59	7.52	10.63%	
MRA-BGCN	2.67	5.12	6.80%	3.06	6.17	8.30%	3.49	7.30	10.00%	
GMAN	2.77	5.48	7.25%	3.07	6.34	8.35%	3.40	7.21	9.72%	
MTGNN	2.69	5.18	6.86%	3.05	6.17	8.19%	3.49	7.23	9.87%	
MTGNN+sampling	2.76	5.34	5.18%	3.11	6.32	8.47%	3.54	7.38	10.05%	
PEMS-BAY										
DCRNN	1.38	2.95	2.90%	1.74	3.97	3.90%	2.07	4.74	4.90%	
STGCN	1.36	2.96	2.90%	1.81	4.27	4.17%	2.49	5.69	5.79%	
Graph WaveNet	1.30	2.74	2.73%	1.63	3.70	3.67%	1.95	4.52	4.63%	
ST-MetaNet	1.36	2.90	2.82%	1.76	4.02	4.00%	2.20	5.06	5.45%	
MRA-BGCN	1.29	2.72	2.90%	1.61	3.67	3.80%	1.91	4.46	4.60%	
GMAN	1.34	2.82	2.81%	1.62	3.72	3.63%	1.86	4.32	4.31%	
MTGNN	1.32	2.79	2.77%	1.65	3.74	3.69%	1.94	4.49	4.53%	
MTGNN+sampling	1.34	2.83	2.83%	1.67	3.79	3.78%	1.95	4.49	4.62%	

Horizon: Target future step (3/6/12/24 minutes later)

ITGNN+sampling: MTGNN but the network input is sampled a subset of graph each iteration.

Summary

Use GNN to learn spatial dependencies between variables.

Learn the relationships between the node pairs (variables) to build networks for GNN.

- Graph learning layer to extract a sparse graph adjacency matrix adaptively based on data.
- Graph convolution model to address the spatial dependencies among variables.
- Temporal convolution module to capture temporal patterns.