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AdityalLab @ Georgia Tech

One of our lab’s focus: explore performance of
data-driven methods in epidemiology/public health
(surveillance, interventions, vaccination,... )

Data from multiple source is often more sensitive to
what is happening ‘on the ground’

Complementary helpful perspective to other traditional

Adityas’
[ ab*
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About us

- PI. B. Aditya Prakash
- Assoc. Professor
PhD. CMU, 2012.
Data Mining, Applied ML
Networks and Sequences

Applications:
- Epidemiology and Public Health
- Urban Computing
« The web
- Security

Homepage: https://www.cc.gatech.edu/~badityap/

& Georgla Rodriguez, Kamarthi, and Prakash 2021 3
. Tech.


https://www.cc.gatech.edu/~badityap/

About us

- Alexander Rodriguez
- 4t year PhD student, graduating May 2023
- Data science/ML in time series and networks

- Motivated by impactful problems

« Critical infrastructure networks
- Epidemic forecasting

- PhD thesis topic: ML for epidemic forecasting
- Homepage: https://www.cc.gatech.edu/~acastillo41/
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Rodriguez, Kamarthi, and Prakash 2021


https://www.cc.gatech.edu/~acastillo41/

About us )

- Harshavardhan Kamarthi !“
- 2" year PhD student

+ Research Interests
- Epidemic forecasting
+ Probabilistic forecasting and uncertainty quantification
- Deep Probabilistic models

- Homepage: https://harsha-pk.com/
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Workshop Webpage

C & adityalab.ccgatech.edu/workshops/21-forecasting-fdsg.html tr * ® 2 T ¥ =

Adlil}-"d () Workshop on Data-driven Computational Ge‘_i_'éggﬁ
_adD
Epidemic Forecasting for West African Countries

| Rodriguez, Alexander (acastillo41@gatech.edu) is signe

We have been invited by the Forecasting for Social Good (F45G) Research Network to lead an online workshop on
epidemic forecasting. The target audiences are researchers and practitioners from West African Countries, but anyone
is welcome until we reach the capacity.

Abstract

Our vulnerability to emerging infectious diseases has been illustrated with the devastating impact of the
COVID-19 pandemic. Forecasting epidemic trajectories (such as future incidence over the next four weeks)
gives policymakers a valuable input for designing effective healthcare policies and optimizing supply chain

daricinng hnwewver thic i< a nan—trivial tack with multinle anen nnectinng  In thic work<hoan we will an

« https://adityalab.cc.gatech.edu/workshops/21-forecasting-f4sg.html or
b.gatech.edu/3cBPfQ7

« All Slides will be posted there. Talk video as well (later).

- License: for education and research, you are welcome to use parts of
this presentation, for free, with standard academic attribution. For-
profit usage requires written permission by the authors.
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Outline

Epidemic forecasting (30 min)
Mechanistic models (1 hrs)

Statistical models (1.5 hrs)

Hybrid models (20 min)

Ensembles (10 min)

Epidemic forecasting in practice (30 min)

15 min breaks after Part 2 and Part 3
We'll be available for questions
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Plan for the Workshop

Theory and research
Setting up the epidemic forecasting problem
General epidemiology: key concepts and models

Statistical modeling and deep learning
Research innovations

Practice Workshop focus:
US real-time forecasting experiences » Computational data-

- driven methods
Coding examples . Short-term

Mechanistic models forecasting (up to 4
Statistical models weeks ahead)

Demo session

Statistical correction of forecasts

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Forecasting Infectious Diseases

- Why? Allocate resources/budget, inform public
policy, improve preparedness

 Background:

- Traditional methods are based on ODEs and agent-
based models

- Data collection has increased
- Methods have difficulties ingesting these data sources

Gr Georgia , _
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Real-time Epidemic Forecasting

Oklahoma Incidence Mortality
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Possible near future:
™M Goes down

=== Stays still

# Goes up

Depends on:

» Current number
of infections

- Interventions in place
+ Contact patterns
+ Exposure to disease



Why Computational Data-driven
Forecasting?

- Epidemic spread is a
spatiotemporal phenomena over
multi-scale networks

- New end-to-end methods available
capable of modeling data with
minimal assumptions R

- Before and after the COVID-19 pandemic: Explored

performance and utility of data-driven models
in short-term forecasting

& Georgla Rodriguez, Kamarthi, and Prakash 2021 11
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Our Participation on CDC
Forecasting Initiatives

Target 1: Influenza like iliness per week

Last few years
Also in COVID-
ILI (March
2020)

Target 2: Weekly Covid Mortality Target 3: Daily Covid
Hospitalizations

m Reported
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National Forecasts
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Our Impact

iy, \ o 4
‘."(/,//é’//' FiUEThi:W Eight

1 of 11 shown on their
page
1t Prize EE 2nd Prize
the COVID-19 g LTI C3.ai COVID-19 Grand Challenge
Symptom Carnegie

Data Mellon €. ISISISIS

Only individual Deep
Learning model in top-5
accuracy in the CDC-led
evaluation for 1+ year

Universi
Challenge v 43 777
Countries Participants
Out of 115 global
participants
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nonpharmaceutical interventions
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Adaptive surveillance
.. and others like vaccine allocation algorithms etc.
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Recent Publications
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A. Rodriguez, N. Muralidhar, B. Adhikari, Anika Tabassum, N. Ramakrishnan, B. A.Prakash. Steering a Historical Disease Forecasting Model Under a Pandemic:
Case of Flu and COVID-19. In AAAI-21.

A. Rodriguez, A. Tabassum, J. Cui, J. Xie, J. Ho, P. Agarwal, B. Adhikari, B. A. Prakash. DeepCOVID: An Operational DL-driven Framework for Explainable
Real-time COVID-19 Forecasting. In IAAI-21.

H. Kamarthi, L. Kong, A. Rodriguez, C. Zhang, B. A. Prakash. When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting. In
NeurIPS 2021.

H. Kamarthi, A. Rodriguez, B. A. Prakash. Back2Future: Leveraging Backfill Dynamics for Improving Real-time Predictions in Future. In submission (available
as arXiv preprint).

A. Rodriguez, B. Adhikari, N. Ramakrishnan, and B. A. Prakash. Incorporating Expert Guidance in Epidemic Forecasting. In epiDAMIK @ KDD 2020.

H. Kamarthi, L. Kong, A. Rodriguez, C. Zhang, B. A. Prakash. CAMUL: Calibrated and Accurate Multi-view Time-Series Forecasting. In submission (available as
arXiv preprint).

P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, A. Vullikanti. Designing Near-Optimal Temporal Interventions to Contain Epidemics. In AAMAS
2020

B. Adhikari, X. Xu, N. Ramakrishnan and B. A. Prakash. EpiDeep: Exploiting Embeddings for Epidemic Forecasting. In SIGKDD 2019

B. Adhikari, B. Lewis, A. Vullikanti, J. Jimenez, and B. A. Prakash. Fast and Near-Optimal Monitoring for Healthcare Acquired Infection Outbreaks. In PLoS
Computational Biology. 2019.

J. Cui, A. Haddadan, A. Haque, Bi. Adhikari, A. Vullikanti and B. A. Prakash. Information Theoretic Model Selection for Accurately Estimating Unreported
COVID-19 Infections. In submission (available as medRxiv preprint).

V. Swain, J. Xie, M. Madan, S. Sargolzaei, J. Cai, M. De Choudhury, G. Abowd, L. Steimle and B. A. Prakash. WiFi mobility models for COVID-19 enable less
burdensome and more localized interventions for university campuses. In submission (available as medRxiv preprint).

E. Cramer et al. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US In submission (available as medRxiv preprint).
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Coming up soon

Survey paper on Data-driven Computational
Epidemic Forecasting.

Workshop material based on this survey

Preprint soon in medRxiv.
Link will be posted in workshop website.

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Part 1: Epidemic Forecasting
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Epidemic Forecasting Pipeline

A. Data Processing B. Model Training & Validation  C. Utilization & Decision Making
Raw data Multiscale Uncertainty F?atun‘a / - . \
dynamics quantification a?\r::lglsl‘?:gt?c?n sl ) Ay ‘“;:OM? i
) :
Processing: delays, Exploratory *l = P TRIREESTH
anomalies, revisions analysis Interpretability Robustness Scenario -
ioinoisy data e Dashboards CDC Initiatives

Ensemble of
/ . . . \\ Neural Mechanistic Real-Time S —
Behavioral Environmental Digital models models Predictions /
H

/ SAFEGRAPH . ‘ G b

Clinical del Ensembles . .
Gonomics — \ Real-Time Forecasting /
" @ Nexistain — _
\_AS8\ == InputData ) =i & @.
/ Epi-indicators Real-valued Event-based\ - — - Ea&g&
i Model Training - Risk Assessment
i : x|k ; * Resource Allocation
r<t, [ A ¥ *
i ﬁ Log Score Hvper P Forecest)
\_ Tar: gets Y, . ypTEt.Jrni:gram Communication
Sample 1 MAE WIS \_ Decision Making -/
K Sample N Validation and Model

\ Selection / Q
Feedback
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Epidemic Forecasting Setting

Forecasting Tasks

Targets of interest

Spatial and temporal scales
Datasets

A A

Model evaluation

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.
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[1] Common Forecasting Tasks

» Used in annual CDC Flu forecasting challenge

Future Incidence Peak Intensity Peak Time Onset
= 3K
- K '

Incidence

Incidence

Incidence

\

*e
.
- -
.
0"

Aug t Jan Apr Aug t Jan Apr Aug £ Jan Apr Aug t Jan Apr

[

Short-term forecasting: Up to 4 weeks ahead
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[2] Targets of Interest

» Influenza
* %ILI: symptomatic outpatients t é = at
- Syndromic surveillance o = ik il
- Lab-tested hospitalizations § &~ -
- COVID-19 ILINet surveillance network
 Mortality
- Hospitalizations
- Cases
Georgia Rodriguez, Kamarthi, and Prakash 2021 51

. Tech.



[3] Spatial and Temporal Scales

U.S. Department of
Health & Human Services

Spatial scales:
- National
 Region/state/province
» County/city (less common)

Regions

L)
Denver

L 5
y'®
Chic
,;L '-i
6l
0 !}

Hawaii

» Temporal scales:
» Weekly

.
National Forecasts

() = Reported

- £ = Columbia
(U = Geneva

[ O m GA_Tech 8 o| ™ cu-select
T = Imperial =3 o 2 ® GA_Tech
T = ISU 2} ©
1“:’ = JHU - 2
S ™ LANL [y
Q= MT N g
[ S g
— _
- a
22 :
= . o
T = S tn o §
i 909009
-§- 8 g eeeessn
;E; < v 000 00
(&) Bands: 95% Prediction Intervals L o o Bands: 95% Prediction Intervals
Apr-01  Apr-15 May-01 May-15 Jun-01  Jun-15 lay-25 May-29 Jun-02 Jun-06 Jun-10 Jun-14 Jun-18 Jun-22
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[4] Datasets: surveillance pyramid
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Line-list data

Surveillance
Reports

surveillance+ {7+ "

vI:nn'u,l_ngj &3
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Digital epidemiology

OPEN @ ACCESS Freely available online PLOS compurationAL BioLoGY

Digital Epidemiology

Marcel Salathé'?*, Linus Bengtsson®, Todd J. Bodnar'?, Devon D. Brewer?, John S. Brownstein®,
Caroline Buckee®, Ellsworth M. Campbell’?, Ciro Cattuto’, Shashank Khandelwal'?, Patricia L. Mabry®,
Alessandro Vespignani®

1 Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania, United States of America, 2 Department of Biology, Penn State University,
University Park, Pennsylvania, United States of America, 3 Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden, & Interdisciplinary Scientific
Research, Seattle, Washington, United States of America, 5 Harvard Medical School and Children's Hospital Informatics Program, Boston, Massachusetts, United States of
America, 6 Center for Communicable Disease Dynamics, Department of Epidemioclogy, Harvard School of Public Health, Boston, Massachusetts, United States of America,
7 Institute for Scientific Interchange (ISI) Foundation, Torino, Italy, 8 Office of Behavioral and Social Sciences Research, NIH, Bethesda, Maryland, United States of America,
9 College of Computer and Information Sciences and Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America

& Georgla Rodriguez, Kamarthi, and Prakash 2021 25
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Surveillance pyramid and datasets

ﬁ Final patient outcome

JOHNS HOPKINS

UNIVERSITY

4 P

&N’ tra
| (R S—
e, s 7 Health
g &

i1 Services Data

#  Community- based/
“ U syndromicsurveillance‘-

f'ﬁr p‘ Sero-Epidemiology

AMERICAN .
ll‘ ) COMMUNITY Community -

Surveys

* us LH\SLSKLRL\II
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HealthData.gov

L y S
' t l’e WOpenSafely |
- /

4

The COVID

Tracking Project
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Mobility and exposure @ SAFEGRAPH

Contact tracing
Retail and commerce data ‘o OpenTable:

Pharmaceutical orders

\telllte images ‘ ) Metrics

Search engines (G0« )gle
Social media

Symptomatic surveys f|U near you ‘

Digital medical and .
“kinsa.

wellness devices

Behavioral surveys n
Waste water \@;jﬁ
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Search Engines and Social Media

» Search activity

- Ad-hoc search engines Go gle YAHOO’

- Specialized search engines

» Social media

* Tweets i
2. e WIKIPEDIA
¢ RSS feed Mk .. The Free Encyclopedia
e o &% s 7 )
.§ 3“
~ W
&-a
# HealthMap Y
= s .«
®
Georgia Rodriguez, Kamarthi, and Prakash 2021 27
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Online Surveys

- Symptomatic surveys

- Behavioral surveys

- Adoption of public health
recommendations

Gr

- Mask wearing
- Social distance

Georgia
Tech.

Rodriguez, Kamarthi, and Prakash 2021

g2 flunear you

Select Symptoms

Thanks! Report for Monday, August 18
through Sunday, August 24.

Last week, | experienced:

[ ] Fever Fatigue
| Cough [ | Nausea
Sore throat Diarrhea
Short breath ' Body aches
Chills ¥/ Headache
Did you receive the flu vaccine after July 31,
2013?

Yes ( No v Don't know

28



Mobility

» Quantify contact patterns
within and across
communities

» Sources:

» Mobile call records
. SAFEGRAPH
- Mobile apps

, &=
€ ol
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Satellite Images

&NEWS EXCLUSIVE ZHONGNAN HOSPITAL OF WUHAN UNIVERSITY

10/10/18 | 506 CARS | 10/17/19| 640 CARS _

[Brownstein+ 2020]
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[5] Model evaluation

* Point Forecasts: Single value per forecast

» Probabilistic Forecasts: Probability distribution of
forecast
- Captures uncertainty, useful for decision making

L Confidence Intervals

,W”“W \

Point prediction

& Georgla Rodriguez, Kamarthi, and Prakash 2021 31
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Evaluation of Point Forecasts

R RMSE:\/Zi=1..T(’131/i_37Z)2

- MAE: 2i=1.T [Yi—Yil

T

. MAPE: Z |yz|— yz"
i—1 Yil

- Others: WAPE, NMSE

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Evaluation of Probabilistic Forecasts

T
1
° Log Score: T ;m(pi(yi))
» Log probability of ground truth outcome (binned)

» Other metrics
 Coverage score

- Interval score & Weighted Interval Score (WIS)
[Bracher+ 2021]

Se(F,y)=(u—-1)+ g(l -y l(y <)+ é(y - u)l(y > u)

1
K+1/2

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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How to choose eval. metrics?

- Based on decision making
- Uncertainty and calibration are important
 Probabilistic evaluation metrics are more desirable

* Log score for influenza
* %ILI are within some bounds

- WIS for COVID-19
- Unbounded values for mortality, cases, hosp

& Georgla Rodriguez, Kamarthi, and Prakash 2021 34
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Part 2: Mechanistic Models
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Mechanistic models

Intuition:

People move from compartments based on the disease
progression

Differential equations describe movement

Modeling approaches:
Mass-action models (ODE models)
Metapopulation models
Agent-based networked models

Georgia
. Tech.
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[1] ODE Models: SIR

One of the most simplest models
Susceptible: healthy, can get infected
Infected: can infect others through contact
Recovered: can not infect others

00 O ® o ®
O o > © o ro

O o 4 I ®op ) ®
S | R

Georgia
. Tech.
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Assumptions

Perfect mixing
Any infected person can infect any susceptible person

No birth or deaths (no ‘demography’)
Total population is constant

Deterministic!

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.
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SIR Model

dsS
o~ _B9T
dt p5

Number of new infections =

dl
~ — B9 —
dt g5

dR

)
dt

Georgia
. Tech.

Rodriguez, Kamarthi,

\beta * # infection attempts

éyIJ

Number of infected
nodes curing

and Prakash 2021

39



Solving SIR

* No closed form solution!

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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SIR: numerical output

Gr
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Tech.
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Online interactive exam

Gr

Data-Driven Computational Epidemic Forecasting / R-Notebook

This code has been adapted from http://epirecip.es/epicookbook/chapters/sir/r_desolve

Build Debug Profile Tools Help

- Addins -

File Edit Code View Plots Session
D - = # Go to file/functior
@ SIR.ARmd @] COVID-Forecasting.Rmd
£ G, | @ Knit - -
1= ---
2 title: "SIR™
3 output: html_document
A= —--
5
6~ """ {r setup, include=FALSE}
7 knitr::opts_chunk$set(echo = TRUE)
8- 77
9 - fH## Credits
18
11
12 Author: Simon Frost
13
14 - ## Mechanistic model example: SIR model
15
15 Define the dynamics of SIR model
17
18
19+ >~ {r}
280 library(deSolve)
21 1library(reshape2)
22 - sir_ode <- function(times,init,parms){
23 -  with(as.list(c(parms,init)), {
24 # ODEs
25 dS <- -beta*s*I
26 dI <- beta*S*I-gamma*I
27 dR <- gamma*IL
51:14 Chunk 4 =
Georgia

Tech.

Rodriguez, Kamarthi, and Prakash 2021
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R Markdown =
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CGr

Many many extensions

With birth/death rates (‘vital dynamics’)
Variable contact rates

Age-structured models

Make things stochastic

Multiple viruses/diseases

See Hethcote 2000, and the book by May and
Anderson 1992

Georgla Rodriguez, Kamarthi, and Prakash 2021
Tech.
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SIR: implicit solution

S(t) = S(0)e Fo(RH)—E(©))

Roo =1 — S(0)e Bolfiee =E(0))

Ry = NB/6

Reproductive Number

Gr Georgia
. Tech.

susceptible fraction,




Threshold Phenomenon: RO

dl = BST — 61 = I(BS — )
-Thiiii?plies .
d 0 if S(0)<d/p

-SoRozﬁ/é

- Basic Reproductive number: average number of secondary cases
caused by one individual



Threshold Phenomenon

-If S(0) <d/8 =1/Ry
- Epidemic dies out
+ Large epidemic if and only if RO > 1

» Hence estimating RO very important!
« Why?
« Immunization: reduce S(0) to below 1/R0

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.
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RO and disease dynamics

Gr
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RO of various diseases

Disease s Transmission : R . .
— — e ° Takes time to estimate!
Chickenpox (varicelia) Aerosol 1012831 * Not as ea Sy
Mumps Respiratory droplets 10-12[32]
Rubella Respiratory droplets 67t
COVID-19 (Delta variant) Respiratory droplets and aerosol 580371 ) E . g . SARS Was est| mated |n
Palio Fecal-oral route 571! hosplta Is
Pertussis Respiratory droplets 550381 o
Smallpox Respiratory droplets 3.5-6.003% + Where perfeCt mIXIn_g Was a
COVID-19 (Alpha variant) Respiratory droplets and aerosol 4-5[37] reasonable assumptlon
HIV/AIDS Body fluids 2-5040]
COVID-19 (ancestral strain) Respiratory droplets and aerosoll*!! | 2.9 (2 43 4)142
sArs Respiatony dopkt 2 4 - NOT homogenous in several
Diphtheria Saliva 2.6 (1.7-4.3)14 Situations
Common cold Respiratory droplets 23143
Ebola (2014 outbreak) Body fluids 1.8 (1.4-1.8)1481
Influenza (2009 pandemic strain) | Respiratory droplets 16(1.3-20)2
Influenza (seasonal sirains) Respiratory droplets 1.3 (1.2-1.4)1471 ¢ COVI D- 1 9
Andes hantavirus Respiratory droplets and body fluids | 1.2 (0.8—1.6)1%! « Still under investigation for
Nipah virus Body fluids 0.5191 novel variants
MERS Respiratory droplets 0.5 (0.3-0.8)1%"]

Source: Wikipedia 2021
& (';rgg{lgla Rodriguez, Kamarthi, and Prakash 2021



[2] Metapopulation Models

Spatially structured

For example: modeling COVID-19 and influenza,
Zika, Ebola...

Model heterogeneity by using travel data
But assume homogeneity at ‘right’ granularities

ojj: daily passenger flow from city i to city j
n;: population of city i, assumed to be fixed
Xi(t), Yi(t), Zi(t): number of people in S/I/R states in city / at time t
Similarly, Yeff

XF(t) = Xi(t) + |:Z)<j(t)—:. — ZX,-(t)ﬂ] and zeff

Georgia , , n;
. Tech. J J 49



Metapopulation Models contd.

Ieff(t)

Xi(t+1) = Xi(t) + > X t)ﬁf

j J

- Written in terms of xeff, yeff zeft

Gr Georgia
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But... Human contact patterns
are not random

Source: Mi Jin Lee at petterhol.me

& grggflgla Rodriguez, Kamarthi, and Prakash 2021 51



How to Capture Them?
Example: Using Call Data Records

- Many recent studies on this topic

#raw data

A

.
Rid
¢

v
-u
Pl
-

e
-
-

-
e
-
-*

“u

)
0:00-7:30 D

17:40-18:30

ﬁ User #2, 61 years old

'ﬂ User #1, 25 years old J

———

#trips #contacts
B C Q/q?’/(oo,/\qx

A B CDE P &
A0 1 0 0 0 <200 0 0 0 O
B|{o 1 1 1 1 20-29{0 0 0 1 0
C|1 00 0O 30-5|0 0 0 0 0
D02 0 00 60-79(0 1 0 0 0
E|1 0 0 0 0 80+|0 0 0 0 O
D

0% 50% 100%

[Oliver et al, Sci. Adv. 2020]
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Numerous COVID-19 examples

- Apple (maps/directions)

» Google (location history)

- Facebook (using high resolution imagery)
- Safegraph (poi access)

 Cubeiqg (mobile phones etc)

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.



[3] Agent-based networked models

- Each individual is an agent in a simulation

» Disease spread over contact networks
- Model heterogeneous interactions between agents

» Concepts: .
- Social contact networks 1' ‘
» Twin cities Y ‘ ‘

i
't g

& Georgla Rodriguez, Kamarthi, and Prakash 2021 >4
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First principles Approach for
Constructing Social Contact Networks

» For individuals in a population
- Demographics (who)
+ Sequences of their activities (what)
« Times of their activities (When)
- Places/locations of their activities (where)
- Reasons for their activities (Why)

* No explicit datasets available
- Synthesize multiple datasets and domain knowledge
- Can model behavioral changes as well

[Marathe and Vullikanti, CACM 2013]

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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First principles Approach for
Constructing Social Contact Networks
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[Marathe and Vullikanti, CACM 2013]
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Example: COVID 19 in MA

School layer

pa~="

Workplace and community layer

Children Adult
population population

Al CED
D @ ® .‘ Fraction of people
P
D MA 000 025 050 075 1.00

[Aleta et al, Nature Human Behavior 2020]
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Calibration of Mechanistic Models

- Estimate parameters
- Beta, delta, initial conditions

{B8*,6*} = argmin(R(t) — Ropserved (t))?

- Typical data includes
- Time-series of new cases from surveillance
- Lots of data problems (missing data, biases, lags)

- For example for COVID-19

- Calibration on infected cases is unlikely to be robust
« On mortality and hospitalizations likely to be better

& Georgla Rodriguez, Kamarthi, and Prakash 2021 58
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Typically

Ranges of parameters
From epidemiological data

Try to model uncertainty in the data
Multiple stochastic calibrations

Georgia
. Tech.
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Pros/Cons Mechanistic Models

Workhorse of epidemiology
Many success stories over 100 years
Easy to extend and build (e.g. see COVID-19 work)

Good numerical solvers exist
Some can also be handled analytically
Long history of ODE and Dynamical theory
See Strogatz: Nonlinear Dynamics and Chaos

Useful to get intuition and some broad principles
More qualitative rather than quantitative

& Georgla Rodriguez, Kamarthi, and Prakash 2021 60
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Pros/Cons contd.

Sometimes does not reflect reality

SARS example
High RO (2.2-3.6)

Estimates were based on hospital wards, where full mixing was
reasonable

Calibration is challenging

Small deviations in parameters can lead to very different
results

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Remarks

CGr

A lot more to say about mechanistic models
Only reviewed some concepts and models

Other resources:
N. Dimitrov and L. Meyers. 2010. Mathematical

approaches to infectious disease prediction and control.

INFORMS, 1-25

H. Hethcote. 2000. The mathematics of infectious
diseases. SIAM review 42, 4 (2000), 599-653

M. Marathe and A. Vullikanti. 2013. Computational
epidemiology. Commun. ACM 56, 7 (2013), 88—96.

Georgla Rodriguez, Kamarthi, and Prakash 2021
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Part 3: Statistical Models
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Statistical Models

Also known as phenomenological models.

Intuition:

Find the best function from a family of functions that approximate
forecast target given input data. T

Best approximate is found using :
past training data. 111111 L(f(x;) — y;)
i=1
Modeling approaches:
Regression models
Language models

Neural models
Density estimation models

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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[1] Regression Models

Assume a linear relationship between input
features and future forecast 7 =wy+wrix

The features x can be high-dimensional set of
multi-modal features

Eg: Past values of epidemic curve (called

AutoRegressive models), Search query volumes , word
occurrence in text, etc.

Georgla Rodriguez, Kamarthi, and Prakash 2021
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AutoRegressive Models

 Use past values of epidemic cures as features to
predict future values

* EQ:

p
Yt = Z¢jyt—j + @ + €
j=1

- We can also add difference between values as
features (like in ARIMA)

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Google Flu Trends

[Ginsberg+ 2009 Nature]

» Simple linear model for nowcasting ILI
- Use search logits of query fractions as features

logit(P) = Bo + B1 —logit(Q) + €

Influenza estimate _ [l Google Flu Trends estimate I United States Data

| | 6804
|“\ )\ \.”‘ j. ","‘ i‘!\.' \,\ v.r" J' \“‘ ju\‘: I\‘\ j I; /\ !\ ‘\'\ o
< : 4\"*“"/’ - L\v‘f "-\,_/‘r ,_ﬁ\\r\_/'/ . \—\_L\'/ f ' \\-./—/ s N 511

Ehe New ﬂdrk Cimes

High-impact work, media Google Uses Searches to Track Flu’s
coverage Spread

f@ln»[‘@

Georgla Rodriguez, Kamarthi, and| BY Miguel Helft 67
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However,...

- Didn’t capture changing trends in keyword
correlates, i.e. didn't handle data drift

- Failed to capture HIN1 pandemic, overestimate
2012-13 season

Googl
Google Flu Trends appears to have overstated 2012-13 U.S. flu intensity o ,O?*g "

10%

2008 Flu Trends algorithm 2009 Flu Trends algorithm
° . - - -

8% -

(61/1 Buipua yeam)
aoualayip julod 0'9

6%

4%

2%

Outpatient visits for influenza-like illness

! " 1 " 1 | " I
2009 ‘ 2010 2011 2012 2013

Flu Trends launch Algorithm update Data as of Feb. 4, 2013. Keith Winstein (keithw@mit.edu)
Nov. 11, 2008 Sept. 24, 2009

Sources: http://www.google.org/flutrends/us, CDC ILInet data from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html,
Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic.

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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ARGO

[Yang+ 2017 SR]

ARGO: AutoRegression with Google search data

Auto Regressive: past N ILI values are used

Uses separate variables for multiple search queries
Search data: Of current time t

N K
Yt = My T+ Z QY —j + ZBiXi,t + €
j=1 i=1

& Georgla Rodriguez, Kamarthi, and Prakash 2021 69
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ARGO2

[Ning+ 2019 Sci. Reports]

Simultaneously predict HHS and national level ILI
Capture interdependencies across regions
Step 1: Region-level independent prediction

Step 2: Refining prediction using increments modelled
as multi-variate Gaussian with inter-region covariates

«
3o ax W N0

%”TT?" —

/8
Rsiivg
Gr Georgia 20
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[2] Language models: using Tweets
to forecast HIN1 pandemic

[Chen+ ICDM '17]
» Topic modelling approach

 Cluster tweets

- Combines
» Information propagation on Twitter
- Epidemiological model

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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States of infection cycle

» Model states of infection cycle using tweets

Had good sleep this morning!

, Going to see my favourite band

Y

Gr Georgia
. Tech.

| am in bed with the worst flu

| should have gotten the vaccine

My neck hurts

No word can describe the y

amount of pain | am in

Rodriguez, Kamarthi, and Prakash 2021

\
Starting to feel better

Going to the concert tonight




Forecasting

- Hidden states model flu-state (SEIR)

- Learn topic model that
- models vocabulary for hidden state and
- transition probabilities across states

Smlleenjny Sick
”“"“‘i.'s..,wurk 5C0LD fe‘:{nm
. kidsE smANGEz ausssms p Throat
Dress E B Flu

(a) S state (b) E state (c) I state

0.09

& Georgla Rodriguez, Kamarthi, and Prakash 2021 73
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HFSTM Model

S: This restaurantis really good

) . E: Themoviewas good
Generating tweets but it was freezing

- Generate state for tweet I: TthinkI have flu

 Generate topic for word Topic: [Background,

Non-flu,
State] @\ olo @
v
State: [S,E,I] k‘“’)‘l)/
! ] ) 7 @ ’
Ol 19) 99, Q/@ @
Use EM Algorithm for -

learning parameters
& Georgia Rodriguez, Kamarthi, and Prakash 2021 74



Online interactive example

Gr

Data-Driven Computational Epidemic Forecasting / R-Notebook

mEdit Code View Plots Session Build Debug Profile Tools Help

Qv = A= # GCo to file/function = Addins -
@ SIR-Rmd @ | COVID-Forecasting.Rmd =[O
1', q s.'I(nil - - +ﬂ - = Run = 'E’ - = A
| 91 -
82 Predict for epiwesks 282838 to 282843
a3
94~ """ Ip) = )
95~ nn_train <- function(w, hidden = c(1@, 48)) {
96 model = neuralnet(labels~death_jhu_incidence+mobility+totalTests+covid_cases,
87 data=dataset[1:(w-18),], hidden=hidden, linear.output=T)
58 return(model)
99+ 1
18@
181 nn.preds = c()
182 ~ for(w in 38:48){
183 m = nn_train(w)
184 nn.preds = append(nn.preds, predict(m, dataset[w-18+1,]))
185~ 1
186
187 nn.preds
188~ "7
19
118 ~ #% Evaluation
111
112~ “*°{r} =
113  ground.truths = covid_data$death_jhu_incidence[38:48]
114 ground.truths
115
116 arima.rmse = sqri(mean((arima.preds-ground.truths)”2)}
117 nn.rmse = sgft(mean((nn.preds-ground.truths)~2)) -
117:13 Chunko'= =~ 7 ’ o R Markdown =
Georgia

Tech.
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CGr

3] Neural Models

Why deep learning?

Georgia

Tech.

Capture non-linear patterns in high-dimensional data
with minor assumptions

Flexible learning of rich representations

Leverage multiple sources of data of variety of
modalities

Composite signals are challenging for calibration
E.g. %ILI is a mix of multiple flu strains and others

Rodriguez, Kamarthi, and Prakash 2021
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Modeling considerations for neural

models
IS DISEASE
DATA
g o UTILIZATION
Spatial v © 7 Sparse data

Transmission

> Interpretability

Cr

Tech.

Rodriguez, Kamarthi, and Prakash 2021

(0p) —Initial value
% / "N\, —-Corrected Data 5 Uncel'talnty
= AN e quantification
9 ~._ revisions
[q0)
-
O
Anomalies
Mask Social g
adoption distancing Actionable forecasts
Georgia .



Modeling ideas

Model temporal dynamics via similarity
Overcome data sparsity
Enable interpretability

Transfer knowledge representations
Learn from other relevant domains

Incorporate spatial structure
Model the spread over adjacent regions
Propagation over networks

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.
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Modeling idea 1: Model temporal
dynamics via similarity

- Idea: clustering for
prEdiCtiOH w— 2010

- 2012
= 2013
mm 2016

Gr Georgia
. Tech.



Model temporal dynamics via
similarity CONTD.

* Idea: Dynamic clustering for
prediction
? —2012/13
Q 6
c ,
B |
% 27 3a a1 48 3 10 17 0 27 34 41 48 3 1 17

(a) vs 11/12 (b) vs 03/04 (c) vs 09/10

& Georgla Rodriguez, Kamarthi, and Prakash 2021 80
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Model temporal dynamics via
similarity CONTD.

- Idea: Dynamic deep clustering for
prediction with limited data

' Historical Query
Length Data,
~ Current Season Data

Historical Data

& Georgla Rodriguez, Kamarthi, and Prakash 2021
. Tech.
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Find similarity to historical seasons

- Embed the historical seasons to capture the similarity with
the current season

* Current season is observed only till week t

Current season Historical seasons
a ' a
| |

1

- Use snippets of historical seasons till week t to learn
embedding

—t

Georgia
. Tech.
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Data-driven approach: EpiDeep

[Adhikari+, KDD'19]

- Deep approach for
forecasting ILI based on
historical data

» Forecasts multiple targets

- One of the first deep
learning-based approach for

influenza forecasting s i g

» Performs pretty well in real-
time forecasting

& Georgla Rodriguez, Kamarthi, and Prakash 2021 83
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Experiments: Baselines

CGr

EB: an empirical Bayesian approach. [Brooks+, PLOS ComBio
2015 ]

published and publicly available version

ARIMA: an auto-regressive method for making
predictions on time-series data.

HIST: historical average of all previous seasons.

KNN: selects the top k closest historical seasons to
the current season, and make predictions on their
dVErage. [Nsoesie+, Stats Com in Infectious Dieases 2011]

LSTM: a version of [venna+, IEEE Access 2017] Without climate

and geographical data.

Georgla Rodriguez, Kamarthi, and Prakash 2021

Tech.
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Performance: National Region

- How well does EpriDeep perform in different

tasks for the national region?

2
Epidemiological Years

Future Incidence

Lower is
better

Gr Georgia
. Tech.

Epidemiological Years

2012 2013
Epidemiological Years

Peak Intensity Peak Week

o
N30
z
x
20
10 ‘ I
0
2010 2012 2013 2014 2015 2016

I EpiDeep

I EB

I Historical
KNN

HE LSTM

mmm ARIMA

Epidemiological Years

Onset

EpiDeep outperforms baselines in most
settings.

Rodriguez, Kamarthi, and Prakash 2021
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Other examples of modeling
temporal similarity

- Temporal and geo. similarity (adjacent regions)

8 2 s 2 Eood §
Y ' T \r0 20" 0y TE Y Ly ;
4 c E ; — ‘
B v < O gg T : \
. I - s 4 &
regionFe"™ ™=, N y

» } M
: ra+h
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g o] %
H oM
X, =[3.108,105,, 0] | 3 £ ; y’-""ge mble —> §
S Yi.t g g 5’:‘:0}:
e i it |- 3 el e
> 9 mobility 2 i
ES % geathcount | 8 5 Y L5
2 ) il -2 _/ rt+h
testing HiE < P :

- Inter-series similarity

Cumulative Confirmed Cases

115000 = —
L CA/SBC
110000 - 2200
d r
105000 . B Reference
o « - 2100

:ggﬁ / sssssssssss / 1900 [J|n et al-, SDM 2021]

28 29 3qu 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
un

2020 (a)
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Detour: Incorporating guidance in
Epidemic Forecasting

- Epidemiological experts may notice unideal behavior
exhibited by statistical approaches

C N0

Christmas E Urban Good Good
dip T ! areas surveillance W Forecasting
3
ke d e AN e I
: areas surveillance Forecasting
1
= 2h_apr U U

Smoothness Regional Equity

- How to enforce epidemic forecasting models to incorporate
expert’s guidance to show desirable properties?

[Rodriguez+, epiDAMIK @ KDD 2020]

& Georgla Rodriguez, Kamarthi, and Prakash 2021 87
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Modeling idea 2: Transfer
knowledge representations

* Neural model automatically learn what to transfer
+ Not everything is relevant! Needs selection

» Examples:

« From one country to another country
 Even in different continents
- In Panagopoulos et al., AAAI 2020
» From a historical scenario to a novel scenario
« From pre-COVID flu to COVID-contaminated flu counts
- In Rodriguez et al., AAAI 2020

& Georgla Rodriguez, Kamarthi, and Prakash 2021 88
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Influenza Surveillance in the Early
COVID Pandemic

- March 2020:
* Flu counts are syndromic (symptomatic)
« COVID-Flu are symptomatic similar
- COVID was being captured by flu surveillance systems

Region 2 (NY) |

Region 10 (WA)

%o Influenza
outpatients

'll' ‘ -
DC
’II/;/})}//{ ILINet surveillance network

Georgi Epidemiological Week
eorgia , _
& TECh? Rodriguez, Kamarthi, and Prakash 2021 (EW)
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A Novel Forecasting Setting

- Influenza counts may be
affected by
« COVID "“contamination”

+ Shift in healthcare seeking
behavior

% (Influenza Outpatients)
o = N w L] %] -] ~ -]

42 45 48 51 2 5 8 11 14 17 20
Epidemiological week (EW)

» This new scenario lead us
a novel forecasting
problem

- Historical flu models unable
to adapt to new trends

Historical ILI
Forecasting
Models

S

% (Influenza Outpatients)
|

Epidemiological week (EW)

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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New COVID-related signals correlate
with new trends

- .
- Line-list based "(,,/g 7 %kmgd
- Testing ."//////4 C

- Crowdsourced "
° ihi JOHNS HOPKINS

Mobility R |
» Exposure S—

» Social Media surveys

- COVID-related signals
»n 1.0
(]
3
© 0.8
> Correlate LA
g 0.6 well with 1 /\N
K= new N ¥/ V)
0.4 trends \ 1L | ’
T |
L
@ 0.2 ‘
u §
(70}
0.0,; 48

Rodriguez, Kamarthi, and Prakash 2021 Epidemiological week (EW) 91



Attentive transfer learning for
heterogeneous domains . o

- CALI-Net: steer a historical flu model (EpiDeep,
KDD 2019) with new COVID-related signals

Hi t urlcal flu model .~ JointLatent | Input Data

8 :
AR :] Feature Space Reconstructlon M National emergency
‘E 7 declared
AR | 8
A= — Gusterng| . -l‘-u' 6 Shift in
her seasons Module : o healthcare
: M apper 5 5 seeking
: EPIDEEP-CN RM_)RM (@) a behavior
COVID related signals
g 5 CAEM Loss ﬁ
sting . : 3
Le pl - 5 ]RM_> R c
Dﬁ@ rizer AL Q | TR T NS
j\/]/l igr ph \ f2 RI3R 2 2 =
Line-list i (@ i = —— Current season
CSD lé i NE vy v s Attentive =1 Other seasons
EE' H O :R [m I_I—I_I_V_( RYSR Imlltatlon °
COVID- 1Ll (o 0ss L ~ © Oz 45 48 51 2 5 & 11 18 17 20
Socil ' Swa | Ys» Ui Epidemiological week (EW)

Source Target

COVID ILI mOdel Eﬁggg::g prediction prediction
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Modeling idea 3: Incorporate spatial
structure

- Pathogens propagate to adjacent regions
- And then to new adjacent regions

* Propagation over spatial graphs

O O
5 O O 0O o O O o @ O

O QO o

L O @ O
O o 5 O ® o ® °
O O
O & 0 3 O pe O
O O )
—-
Time
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Graph message passing for spatial
propagation

- ColaGNN:

- Graph neural network for spatial structure
- Dilated convolution for temporal modeling

[Deng+, CIKM 2020]

T 5
A Dilated
- [Convolutlon] [ Graph }
hon e
, ‘m > HC Passing

Ioca:tlonl {' H
' X it L)
" ) /Ei; e

Location %

aware Prediction
attentlon

location j |

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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[4] Density Estimation Models

- Directly model the forecast distribution

- Parametric. parameters of distribution as function of
features

- Mon-parametric. Function of training datapoints
leveraging similarity

& Georgla Rodriguez, Kamarthi, and Prakash 2021 95
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Em pl rica| Bayes [Brooks+ 2015 PLOS]

Idea: Current season’s epidemic curve IS Drobablllstlc
distribution of features

Model parameters: ‘ \A

Similarity is shape to past sequences s
Peak height, week ol
Scaling factor of the curve =7 X

All modelled as priors of forecast distri :)utlon
Use Bayesian Inference to calibrate for current season

ransformation:

& Georgla Rodriguez, Kamarthi, and Prakash 2021 96
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DElta DenSity [Brooks+ 2017 PLoS]

- Use kernel density estimation to leverage similarity with
historical seasons

» One of the top models in Flusight 2017 challenge

Simulating Week 51 Simulating Week 52 Simulating Week 1
9 Past Future Past Future Past Future
6 -

wiLl

Simulating Week 2 Simulating Week 3 ... Drawn Trajectory
9- Past Future Past Future Past Future
6-
3 ) /k
0.. ............................................................................................
DOB 20 CcaS s S>ScS DaG>0cass>ScS DaG>0cass >SS
0] T O© 0] T Qm 0] T Om
2P0283P=s<23° LP0283P=<S3°  FR0283 =<3
30 39 48 5 13 22 31 30 39 48 5 13 22 31 30 39 48 5 13 22 31
\Aaale
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Gaussian Process [Zimmer+ 2019 ICML]

- Used Gaussian Process over incidence values of previous
seasons

- Showed reasonable confidence intervals and state-of-art
log score over past models

] 3 week

201213 1

k X .
% X
| s X |

44 47 50 1 4 7 10 13 16 19
Epidemic Week

ILI

ONBRO®OO

2018/19 1

ILI

OoONB~OOO

44 47 50 1 4 7 10 13 16 19
Epidemic Week
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Neural models for calibrated
forecasts

- Density Estimation models don't focus on well-
calibrated forecasts

- Can't adapt to provide reliable forecast uncertainty on
novel patterns

Sseason 2019/20 Forecasts near week 24

T3 " Season 2019/20 Forecasts near week 24
= Observed Novel 3™ pea 8 Ground
= RNP !
81 = Epideep p i 6
.~ EB 2 _
- § = Mean is close
= N = to ground
3 Wrong 3 truth
Moc{els Overconfident 2
Don’t adapt prediction
TO IlOVGl scenarilos
10 15 20 25 0 5 10 15 20
Week No. Week No.

& Georgla Rodriguez, Kamarthi, and Prakash 2021 9
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EpiFNP: Neural non-parametric
model for better calibration

- Leverage Neural Sequential models to capture long
term sequential patterns

* Non-parametric Gaussian Process
- Flexibly model forecast distribution
- Leveraging similarities with past historical sequences

L __ /' Accurate and

Well-calibrated
heural
forecasting
model

Deep Sequential
Models

& Georgla Rodriguez, Kamarthi, and Prakash 2021 100
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Epl FN P : ArCh IteCtu re [Kamarthi+, NeurIPS 2021]

Sequential representations +
neural Gaussian processes

Reference Set R
(a) Probabilistic Neural (Full |nC|dence sequences of past seasons) (c) Predictive

Sequence Encoder Distribution
@ Parameterization

,,’ ’ ; l oot

...I ...\I“.I L ) -
Train\Test set M : f
(Prefix of past/current A A %} #
seasons' sequences) i

wiLl

Legend

L@ ™ | G |-

000 cru % Gaussian

Self-Attention a '

andsummation il Bemnoulli
..... » Sample from
distribution

toid

(b) Stochastic Correlation Graph

Rodriguez, Kamarthi, and Prakash 2021
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Results

=
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©
|
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Well calibrated
predictions
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Pros/Cons Statistical Models

State of the art in multiple forecasting tasks

Short-term forecasting
Uncertainty quantification

Bring a complementary perspective closer to data

Unaware of epidemic spread mechanisms
Poor performance in long-term
Unable of evaluating what-if scenarios
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Part 4: Hybrid Models
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Hybrid Models

Use both mechanistic and statistical components
as complementary pieces.

Modeling approaches:
Discrepancy modeling
Parameter estimation

Georgia
. Tech.
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[1] Discrepancy modeling

Statistical model resolves the discrepancies
between a model (often mechanistic) and ground
truth data.

In other words, statistical model
refines/corrects another model.
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Hierarchical Bayesian Model for
Mechanistic Discrepancy

[Osthus et al. 2019, Bay. Analysis]
- DBM refines mechanistic predictions with a

nierarchical Bayesian model.

Common Individual

) Qe'ﬁnement N Discrepancy + 4 Discrepancy

components: H/\N /\ (SSAPESSy W

- State-specific
deviation J‘\ /\ NEares==

» Season-specific | | .
deviation NEEaes :‘f};/\ R ﬁ;;ﬁ =

- Trends I T Tl T T

Figure credit: Sara Del Valle, LANL
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2] Parameter estimation

[Qian+ NeurIPS 2020]

- Upper-layer GP uses o o Ro estimation
country-specific Upperfayer

features + policies in v N
] <= Mechanistic
place to estimate R, model
- Lower-layer GP refines ‘_).
- Lower-layer GP @ 4— Refinement
predictions
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Counterfactual based on new set of
policies

(b) Counterfactual scenario analysis within the UK

What could have

& Hantiened? - What could happen? B

@ Strict policy
COVID-19 % Loose policy
€ Actual policy

Fatalities

Policy-making

1,000 deaths €+ window

March April May June July August
Timeline
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Part 5: Ensembles
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Ensembles

CGr

Combining models into an "ensemble" often
provides more robust forecasts than any single
model

Consistently found across multiple epidemic
forecasting efforts

Flu: Reich et al. 2019, PLOS Comp Bio

Dengue: Johansson et al. 2019, PNAS

Ebola: Viboud et al. 2018, Epidemics

Georgia
Tech.
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Policy makers needed >1 model

Early April 2020

L1

IHME Model Chris Murray

Slide credit: Nicholas Reich, UMass Amherst
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Diversity of COVID-19 models

Georgia
. Tech.

IHME-CurveFit: "hybrid modeling approach to generate our forecasts, which incorporates elements of
statistical and disease transmission models."

MOBS-GLEAM_COVID: "The GLEAM framework is based on a metapopulation approach in which the
world is divided into geographical subpopulations. Human mobility between subpopulations is
represented on a network."

UMass-MechBayes: "classical compartmental models from epidemiology, prior distributions on
parameters, models for time-varying dynamics, models for partial/noisy observations of confirmed cases
and deaths.”

UT-Mobility: "For each US state, we use local data from mobile-phone GPS traces made available by
[SafeGraph] to quantify the changing impact of social-distancing measures on 'flattening the curve ' "

GT-DeepCOVID: "This data-driven deep learning model learns the dependence of hospitalization and
mortality rate on various detailed syndromic, demographic, mobility and clinical data.”

Google Cloud Al: "a novel approach that integrates machine learning into compartmental disease
modeling to predict the progression of COVID-19"

Eacebook Al: "recurrent neural networks with a vector autoregressive model and train the joint model with

a specific regularization scheme that increases the coupling between regions"

CMU-TimeSeries: "A basic AR-type time series model fit using lagged values of case counts and deaths
as features. No assumptions are made regarding reopening or governmental interventions.”

Slide credit: Nicholas Reich, UMass Amherst
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What is the optimal ensemble?

No Yes

Q Q

No | Equal-weighted mean Variations on a weighted mean

<

Yes Median Variations on a weighted median

= Median of best 5 or 10 individual models
= Weighted median, weights from a weighted mean ensemble
= Weighted median, weights based on relative WIS

- Takeaway: use a robustly trained ensemble

Slide credit: Nicholas Reich, UMass Amherst
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Results in COVID-19

[Craemer+, medRxiv 2021]

Average 1-week ahead weighted interval scores by model

2009 | . :

: : —e— Average score of all models : G

Q

! ! ~#- COVIDhub-baseline ! 4=

1504 ! ' | o

; . -8~ COVIDhub-ensemble ; QO
(7)) 1 1 1

= | : : =
) I I 1

% 100 : ; 1 gj,)

© 1 1 1 6
> 1 1 1

< 1 I P Cw)
1 1

501 | : ‘( -

1 vy ®
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0 1 1 1 1 v
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All models are useful

No model is always good

Top models in COVID Forecast Hub:

Mechanistic
Statistical

Usefulness may depend on
Epidemic stage: uptrend, downtrend, near peak
Geographical region
But largely an open research question

& Georgla Rodriguez, Kamarthi, and Prakash 2021
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Super-ensembles

[Adiga+, medRxiv 2021]

Aug 2020 Jan 2021

L L L L L L | ] L L L L L
éWeekly

Individual model retraining
completion Sunday 12-2 PM

™ Weekly data updated

W y By Sunday 4 AM
Historical forecasts ([ AR | ARIMA | [ AR-spatial] ‘ Data processing [ JHU CSSE \}_
Retraining complete by

—L[ st ] [ SEIR]@J" L case count
Sunday 4-6 PM

: o Individual forecasts ( Expert inspection +
( BMA weights | 5D, Ensemble forecasts | Format per CDC
training Weights L guidelines + git pull

request
Store historical forecasts (4 weeks) | g Roadyfor
L + updated time series data J Sunday 10 PM

| 1
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Part 6: Epidemic Forecasting in
Practice
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Epidemic Forecasting Pipeline

A. Data Processing

Raw data
Processing: delays, Exploratory
anomalies, revisions analysis

ﬁehavfora.‘ Environmental Digital “

/ 2] sarecRAPH ,‘ a

Clinical
) _ Genomics
PR & Nextstrain
SN
\ M == InputData j

/ Epi-indicators Real-valued Event-based\

- %

|

|

!
%
-

Lin__ hpr

==-
2N

B. Model Training & Validation

Multiscale Uncertainty F?atun‘a
. . . engineering
dynamics quantification .
and selection
L Robustness Scenario
I Fprhet b iyt to noisy data selection

!

/ Neural Mechanistic \
models models
Hybrid Ensembles
models

Training

Model
@ *
Log Score Hyper Param
. Tuning
MAE WIS
Validation and Model

\_ /
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C. Utilization & Decision Making

*l g 'ﬂ ForecastHub

e -
Dashboards CDC Initiatives
M \
Ensemble of
Real-Time S —
Predictions

H ="

ol

Risk Assessment

Resource Allocation

Forecast
Communication

\_ Decision Making -/

Feedback
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Forecasting in Practice

» Topics:
1. US CDC initiatives
2. Real time experiences
3. Decision making
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[1] Forecasting Initiatives

CDC's Epidemic Prediction Initiative
2014-2020 Influenza — US National
2015 Dengue — Iquitos, Peru & San Juan, PR
2015-2020 Influenza — US HSS Regions
2017-2019 Influenza hospitalizations — US National
2017-2020 Influenza — US States

2019-2020 Ae. aegypti & Ae. Albopictus mosquitoes — US
counties

2019-2020 Department of Defense Influenza — US military
facilities
2020 West Nile neuroinvasive disease — US counties

Slide credit: Matt Biggerstaff, US CDC
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COVID-19 Forecast Hubs

US COVID-19 Scenario Modeling Hub

COVID-19 = >
ForecastHub

US COVID-19 Forecast Hub

= >
L German and Polish COVID-19 Forecast Hub
= e \L
European COVID-19 Forecast Hub
| | | | | >
April 2020 May 2020 July 2020 Dec 2020 Feb 2021 April 2021

Source: Johannes Bracher, KIT Karlsruhe and HITS Heidelberg
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Standardization efforts of real-time
forecast submissions

A Forecast Archive

Welcome to the Zoltar forecast archive, an open-source web application that facilitates the storage. retrieval. evaluation, and
visualization of point and probabilistic forecasts. Zoltar was developed to assist with many kinds of real-time forecasting projects.

‘ Learn more »

o' Project: COVID-19 Forecasts

Summary: 111 models, 5424 forecasts, 79,213,246 predictions COV| D_‘] 9

: b
Owner: covid1Shub ,{7 FO re Ca St H u
Model ydh28, vrushti-mody
Owners:
Time Interval Week
Type
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[2] Real-time Experience and
Challenges

Gr Georgia
. Tech.



Operational Deep Learning
Fra mewcrk [Rodriguez+, IAAI 2021]

Gr

Georgia
Tech.

Data Module

iy | e liss | = posure Feedback
A J— :
=¥ fr,“,’t\" A * Alignment of delayed
.
L - signals
* Normalize temporal
Testing | [rowd gymp! granularities

Spatial aggregation and
de-aggregation
¢ Imputation

"; om“"c

L 4
=i7' s¢

Prediction Module

Probabilistic
Predictions

Individual
Input Data Bootstrapping Neural Models

Explainability Module

DeepCOVID Interface -

Retrospective analysis of signals
Select region
National -
Select group of signals
all -

all

Line-list
* Testing
Exposure

Mobility
Social Media

Analysis of real-time predictions

Predictions
Target Al signals
> 1wk abcad inc death 5551
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Visualization of signals
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Highlights of results

Anticipate Trend Changes Capture finer-grain patterns
—— Ground truth data from JHU 600 1
1200 | ~® Associated predictions —— Estimate based on COVID Tracking data
—i— Associated Ground Truth to Compare | Associated predictions
95% Confidence Interval n 500 )
» 1000 1 e 95% Confidence Interval
= =0
g S 400- WW
£ 800 o
: 2
S £ 3001
© 600 A )
[} V]
: g
£ 200 - ° 200
()
=
200 1 100 f
0 T T T T T 0 T T T T T
10 15 20 25 30 02/01 03/01 04/01 05/01 06/01
epidemic week Dates
better . 16000 |
forecastin - : :
9 « 140001 Main epidemic
| -
0.141 mmm DeepCOVID BB DeepCOVID 5 12000 - i . ili
0.12| . COVID Hub Ensemble 2000 HEE COVID Hub Ensemble 8 drlver' mOblllty
+ 10000 -
0.104 1500 8
w T 8000 1
0 0.08 (o] ©
qz: 0.06 ~ 1000 5 6000 -
. 5 .
0.04) S 40001 Predicted on 07/10
500 —
0.02 1 2000
0'0071 wk ahead 2 wk ahead 0 1 wk ahead 2 wk ahead 0 / / /
wk ahea wk ahea
inc death inc death inc death inc death 04/17 05/29 07/10

Dates
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External
Top Ranked Model
CDC

- Cramer et al. evaluated model predictions
submitted to the CDC.

- Evaluation:

1 to 4 week ahead
» May 2020 - Oct 2021 (1+ year)
+ 51 locations (national + states)

* DeepCOVID ranked top 5 out of 25

individual models. E
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Data Challenges: Don't
Underestimate!

(C1) Multiple data sources and formats
Format varies over time

(C2) Select signals with epidemiological significance

(C3) Temporal misalignment
Delays, pause in reporting, differ in granularity

(C4) Spatial misalignment
Differ in granularity: county vs state vs national
(C5) Data quality and missing data

Noisy and unreliable for some states
New hospitalizations (target) is not reported by all states
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Data Quality issues: Data Revisions

Stability Time = 24 weeks Mortality finally stabilize

to around 400 at week
Human error, data 3751 —

8+24 = week 52 !
instability, delays, 350 1
disasters

Backfill Error =
|1404-223|/1404|=
44 .8%

Signal Value

;%)

|

(W]
Il

Initial/real-time 291
value = 223 T

T T T T T T T
0 5 10 15 20 25 30
Revision Week

Revision of mortality for
TX released on week 28
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Data revisions are significant

 Over half the signals show backfill error over 32%

- Targets revised by 5%
- Stability time average around 3-4 weeks

ocial

Feature type

Average Backfill Error
across feature types

Backﬁll Error

130
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Model performance is affected by
data revision

Model Prediction ()  [nitial (real-time)

Not samel!

Model Prediction <( EEEEeeesssssssssssssssmmm)  Stable label
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Refining predictions due to backfill

Given

Output
« Refined current week

History of model’s predictions Elredlctt!on( ng”;‘)di' that 'Sd
due to training on real-time oser to (unknown) revise

data target

Model’s current week’s
prediction

Bseqgs of all past signals from
all regions

Week No.

e = | ] E/A ) REEE

Gr Georgia
. Tech.

Current week

prediction
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Back2Future

» Learns from past revision patterns of all features

- Refines model predictions of any model given
prediction history

‘Grathen‘ _’Bseq Slmllarlty ‘@

BSeqS Backfill
Dynamics
' =Sl mbedding |
Backfill Refined
Past Model _ ) _}‘ Refiner Ine /\
Predictions ModelEnc g;gihg:ﬁz Prediction
B Week No.
- Current Week
Week No. Prediction
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Back2Future: Results

- Improves predictions of top-models by 6.65% with
over 10% in some US states

Takeaway: data quality
issues can be helped
with statistical correction

Average imporvement in MAE
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Link: https://github.com/AdityalLab/Back2Future

H AdityalLab / Back2Future ' Public

<> Code Issues Pull requests Actions Projects Security Insights Settings

¥ master ~ ¥ 1branch > 0tags Go to file Add file ~ <> Code ~

\ kage08 Model preprocess csv fczeb71 6 hours ago X9 5 commits

covid_data First Commit 6 months ago
data_extract Model preprocess csv 6 hours ago
gnnrnn First Commit 6 months ago
model_preds Model preprocess csv 6 hours ago
results First Commit 6 months ago
saves First Commit 6 months ago
.gitignore First Commit 6 months ago
LICENSE Update README, Added LICENSE 6 months ago
README.md Add paper link 6 months ago
covid_utils.py First Commit 6 months ago
environmentym| First Commit 6 months ago
example sh First Commit 6 months ago
extract.sh First Commit 6 months ago

setup.sh First Commit 6 months ago

[
|
|
|
[
|
0
O
B
B
0
0
B
B

train_b2f.py First Commit 6 months ago

()

train_bsegenc.py First Commit 6 months ago
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[3] Decision making

Leverage predictions to inform decision making for
policymakers, public health workers, supply
chains, etc.

Types:
Strategic: Large-scale policies

Tactical: Small-scale, high density action space, to
accomplish a narrow goal
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Strategic Interventions for
mitigating foot and mouth disease

[Probert+ PloS 2018, RS 2019]
» Use simulations based on past outbreak data.

- Control measures:
- Vaccinate animals
» Cull farm animals

 Can be solved as Sequential Decision making
problem (leverage Reinforcement Learning)
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Tactical Interventions for ventilator
allocation

* Bertsimas et al. (2021) leverage future case
forecasts to model optimal resource-allocation

* Tradeoff:

- Satisfy future demand for ventilators
» Reduce inter-state transport cost
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Final Remarks
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[1] All models are useful

We have provided a toolkit of methods
Ensembles are often the most robust

Mechanistic often better for qualitative insights
rather than quantitative accuracy
Especially agent-based models

Statistical models have SOTA performance in
multiple short-term forecasting tasks

Hybrid models are gaining traction
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[2] Asking when, where, who

- When and where did the outbreak start? Who got
infected?
- Requires accurate and timely data from the ground
-+ Reports from public health agencies e.g. CDC, WHO,

PAHO, ...
when and where did coronavirus start !, Q
Q Al =) News [&] Images [*] Videos ) Shopping i More Settings  Tools

About 884,000,000 resultg)0.26 seconds)

* Very challenging!
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[3] Asking What, When?

- What to expect as it is spreading? What kinds of people
are likely to get infected? When will it peak?
- Many outbreaks die out on their own

- Need data plus models to understand how the disease will
spread
 Roles: short term, long term prediction vs understanding
- Conflicting goals: accuracy, transparency, flexibility

- Important objective: forecast how the outbreak will
spread for resource planning and decision making
+ Many ‘forecasting challenges’ recently ! E.g. flu, COVID etc.

- How big will the peak be?
- When will it peak? Data + Models +

Efficient Algorithms +
Simulations

» Public Communication
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Studying epidemics in real time

- Editorial, Fineberg and Harvey, Science, May 2009:
Epidemics Science in Real-Time

» Five areas:

« Pandemic risk,
vulnerable populations,
available interventions,
implementation possibilities
pitfalls, and public understanding
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Studying epidemics in real time

* Modeling Before the * Modeling After/During
epidemic the epidemic

1. Determine the 1. Quantifying transmission
(non)medical parameters,
interventions required, 2. Interpreting real-time
feasibility of containment epidemiological trends,
optimal size of stockpile 3. measuring antigenic shift
best use of 4. assessing impact of
pharmaceuticals once a interventions.

pandemic begins Data Science is

very important
" Tech. Sty for all of these!

Georgia



Why data science?

IN ADDITION to increasing data collection:

Questions about epidemic spread naturally have a large
spatial and temporal scale

And multiple such scales!
Small and big data, noisy and incomplete
New tools can help epidemiologists

New data science and Al techniques which can handle
end-to-end learning

New Stochastic optimization techniques
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Data Science
for

Epidemiology
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Reminder on Workshop Webpage

- https://adityalab.cc.gatech.edu/workshops/21-
forecasting-f4sg.html or b.gatech.edu/3cBPfQ7

- All Slides will be posted there.
- Talk video as well (later).

- License: for education and research, you are
welcome to use parts of this presentation, for free,
with standard academic attribution. For-profit usage
requires written permission by the authors.
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https://adityalab.cc.gatech.edu/workshops/21-forecasting-f4sg.html
https://t.co/SiV2hmAlZd?amp=1

Stay tuned

Survey paper coming soon

Epidemiology meets Data Science Workshop
https://epidamik.github.io/ .
Hosted at KDD 2021 epiDAMIK

mmmmm @KDD 2021

And more exciting research and tools!
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Engineering

Social, Behavioral and
Economic Sciences

Information
Science and

o 5 :: ‘ \\I —
Engineering - EJD '—

Disciplines

We recently organized the National PREVENT
symposium (Feb 22/23): Cross-cutting disciplines
and scales for pandemic prevention and prediction

—

Videos and handouts: prevent-symposium.org
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Fill survey: https://forms.gle/5JuSSTQde8FV3PVQ9

Thanks!

To F4SG for the Stay in touch!
T Alexander Rodriguez
Invitation

 email: arodriguezc@gatech.edu

CDC COVID-19 * web: cc.gatech.edu/~acastillo41

_ y @arodriguezca
Forecasting Hub

_ Harsha Kamarthi
Data collection « email: hkamarthi3@gatech.edu

volunteers e web: www.harsha-pk.com/
y @harsha_64

Collaborators |
B. Aditya Prakash

Funding agenCieS  email: badityap@cc.gatech.edu
* web: cc.gatech.edu/~badityap/

@ y @badityap
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