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AdityaLab @ Georgia Tech

• One of our lab’s focus: explore performance of 

data-driven methods in epidemiology/public health 

(surveillance, interventions, vaccination,… )

• Data from multiple source is often more sensitive to 

what is happening ‘on the ground’

• Complementary helpful perspective to other traditional 

methods



About us 

• PI: B. Aditya Prakash 

• Assoc. Professor

• PhD. CMU, 2012. 

• Data Mining, Applied ML

• Networks and Sequences

• Applications: 

• Epidemiology and Public Health

• Urban Computing

• The web

• Security

• Homepage: https://www.cc.gatech.edu/~badityap/

https://www.cc.gatech.edu/~badityap/


About us

• Alexander Rodríguez

• 4th year PhD student, graduating May 2023

• Data science/ML in time series and networks

• Motivated by impactful problems

• Critical infrastructure networks

• Epidemic forecasting

• PhD thesis topic: ML for epidemic forecasting

• Homepage: https://www.cc.gatech.edu/~acastillo41/

https://www.cc.gatech.edu/~acastillo41/


About us 

• Harshavardhan Kamarthi

• 2nd year PhD student

• Research Interests

• Epidemic forecasting

• Probabilistic forecasting and uncertainty quantification

• Deep Probabilistic models

• Homepage: https://harsha-pk.com/

https://harsha-pk.com/


Workshop Webpage

• https://adityalab.cc.gatech.edu/workshops/21-forecasting-f4sg.html or 
b.gatech.edu/3cBPfQ7

• All Slides will be posted there. Talk video as well (later).

• License: for education and research, you are welcome to use parts of 
this presentation, for free, with standard academic attribution. For-
profit usage requires written permission by the authors. 

https://adityalab.cc.gatech.edu/workshops/21-forecasting-f4sg.html
https://t.co/SiV2hmAlZd?amp=1


Outline

1. Epidemic forecasting (30 min)

2. Mechanistic models (1 hrs)

3. Statistical models (1.5 hrs)

4. Hybrid models (20 min)

5. Ensembles (10 min)

6. Epidemic forecasting in practice (30 min)

• 15 min breaks after Part 2 and Part 3
• We’ll be available for questions



Plan for the Workshop

• Theory and research
• Setting up the epidemic forecasting problem

• General epidemiology: key concepts and models

• Statistical modeling and deep learning
• Research innovations

• Practice
• US real-time forecasting experiences

• Coding examples
• Mechanistic models

• Statistical models

• Demo session
• Statistical correction of forecasts

Workshop focus: 
• Computational data-

driven methods 
• Short-term 

forecasting (up to 4 
weeks ahead)



Forecasting Infectious Diseases

• Why? Allocate resources/budget, inform public 

policy, improve preparedness

• Background:

• Traditional methods are based on ODEs and agent-

based models

• Data collection has increased

• Methods have difficulties ingesting these data sources



Real-time Epidemic Forecasting

Possible near future:
Goes down

Stays still

Goes up

Depends on:
• Current number 

of infections

• Interventions in place

• Contact patterns

• Exposure to disease

• Etc.

Oklahoma Incidence Mortality



Why Computational Data-driven 
Forecasting?

• Epidemic spread is a 

spatiotemporal phenomena over 

multi-scale networks

• New end-to-end methods available 

capable of modeling data with 

minimal assumptions

• Before and after the COVID-19 pandemic: Explored 
performance and utility of data-driven models 
in short-term forecasting



Our Participation on CDC 
Forecasting Initiatives

Target 2: Weekly Covid Mortality Target 3: Daily Covid 
Hospitalizations

Target 1: Influenza like illness per week

Since April End 2020

Last few years
Also in COVID-
ILI (March
2020)



Our Impact

Only individual Deep 
Learning model in top-5 
accuracy in the CDC-led 
evaluation for 1+ year

2nd Prize
1st Prize

Out of 115 global 
participants

1 of 11 shown on their 
page 



COVID 
Response

Visualizing impact of 
nonpharmaceutical interventions

On-campus Mobility and 
Data-driven Interventions

Adaptive surveillance

https://www.cc.gatech.edu/~badityap/covid.html

Hospital Acquired Infections

… and others like vaccine allocation algorithms etc.

https://www.cc.gatech.edu/~badityap/covid.html
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• J. Cui, A. Haddadan, A. Haque, Bi. Adhikari, A. Vullikanti and B. A. Prakash. Information Theoretic Model Selection for Accurately Estimating Unreported 
COVID-19 Infections. In submission (available as medRxiv preprint).

• V. Swain, J. Xie, M. Madan, S. Sargolzaei, J. Cai, M. De Choudhury, G. Abowd, L. Steimle and B. A. Prakash. WiFi mobility models for COVID-19 enable less 
burdensome and more localized interventions for university campuses. In submission (available as medRxiv preprint).

• E. Cramer et al. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US In submission (available as medRxiv preprint).



Coming up soon

• Survey paper on Data-driven Computational 

Epidemic Forecasting.

• Workshop material based on this survey

• Preprint soon in medRxiv.

• Link will be posted in workshop website.



Part 1: Epidemic Forecasting



Epidemic Forecasting Pipeline



Epidemic Forecasting Setting

1. Forecasting Tasks

2. Targets of interest

3. Spatial and temporal scales

4. Datasets

5. Model evaluation



[1] Common Forecasting Tasks

• Used in annual CDC Flu forecasting challenge

Short-term forecasting: Up to 4 weeks ahead



[2] Targets of Interest

• Influenza

• %ILI: symptomatic outpatients

• Syndromic surveillance

• Lab-tested hospitalizations

• COVID-19

• Mortality

• Hospitalizations

• Cases

ILINet surveillance network



[3] Spatial and Temporal Scales

• Spatial scales:

• National

• Region/state/province

• County/city (less common)

• Temporal scales:

• Weekly

• Daily



[4] Datasets: surveillance pyramid



Line-list data
• Who, when and where a person was infected

Population surveys

Hospital records

Lab surveys

Surveillance 
Reports

Rodríguez, Kamarthi, and Prakash 2021 24



Digital epidemiology



Surveillance pyramid and datasets



Search Engines and Social Media

• Search activity

• Ad-hoc search engines

• Specialized search engines

• Social media

• Tweets

• RSS feed



Online Surveys

• Symptomatic surveys

• Behavioral surveys

• Adoption of public health 

recommendations

• Mask wearing

• Social distance



Mobility

• Quantify contact patterns 

within and across 

communities

• Sources:

• Mobile call records 

• Mobile apps



Satellite Images

[Brownstein+ 2020] 



[5] Model evaluation

• Point Forecasts: Single value per forecast

• Probabilistic Forecasts: Probability distribution of 

forecast

• Captures uncertainty, useful for decision making

Confidence Intervals

Point prediction



Evaluation of Point Forecasts

• RMSE:√
σ𝑖=1..𝑇 𝑦𝑖−෦𝑦𝑖

2

𝑇

• MAE:
σ𝑖=1..𝑇 |𝑦𝑖− 𝑦𝑖|

𝑇

• MAPE:

• Others: WAPE, NMSE

𝑡

𝑦𝑖 − 𝑦𝑖



Evaluation of Probabilistic Forecasts

• Log Score:

• Log probability of ground truth outcome (binned)

• Other metrics

• Coverage score

• Interval score & Weighted Interval Score (WIS) 

[Bracher+ 2021] 



How to choose eval. metrics?

• Based on decision making

• Uncertainty and calibration are important

• Probabilistic evaluation metrics are more desirable

• Log score for influenza

• %ILI are within some bounds

• WIS for COVID-19

• Unbounded values for mortality, cases, hosp



Part 2: Mechanistic Models



Mechanistic models

• Intuition: 

• People move from compartments based on the disease 
progression

• Differential equations describe movement

• Modeling approaches:

1. Mass-action models (ODE models)

2. Metapopulation models

3. Agent-based networked models



• One of the most simplest models

• Susceptible: healthy, can get infected

• Infected: can infect others through contact

• Recovered: can not infect others

• Compartmental Models

[1] ODE Models: SIRSIR model: S ! I t ransit ion

S I R 

Assumptions

Complete mixing among population of size N

Model evolves in discrete steps. At each time

each susceptible individual u picks a random person v from the population

if v is infected, then u gets infected with probability β

each infected individual changes to R state with probability γ

6 / 39

𝛽 𝛿



• Perfect mixing 

• Any infected person can infect any susceptible person

• No birth or deaths (no ‘demography’)

• Total population is constant

• Deterministic!

Assumptions



SIR Model

Number of infected 
nodes curing

Number of new infections = 
\beta * # infection attempts 



Solving SIR
• No closed form solution! 



SIR: numerical output



Online interactive example



Many many extensions

• With birth/death rates (‘vital dynamics’)

• Variable contact rates

• Age-structured models

• Make things stochastic

• Multiple viruses/diseases

• ……..

• ……..

• See Hethcote 2000, and the book by May and 
Anderson 1992



SIR: implicit solution

Reproductive Number



• This implies

• So 
• Basic Reproductive number: average number of secondary cases 

caused by one individual

Threshold Phenomenon: R0



• If

• Epidemic dies out 

• Large epidemic if and only if R0 > 1

• Hence estimating R0 very important!

• Why?

• Immunization: reduce S(0) to below 1/R0  

Threshold Phenomenon



R0 and disease dynamics

Effect of R0 on epidemic dynamics

Infected fraction increases with R0

(Dimitrov and Meyers, INFORMS, 2010)

13 / 39

Source: Dimitrov and Meyers, INFORMS 2010



• Takes time to estimate!
• Not as easy

• E.g. SARS was estimated in 
hospitals
• Where perfect mixing was a 

reasonable assumption

• NOT homogenous in several 
situations

• COVID-19
• Still under investigation for 

novel variants

R0 of various diseases

Source: Wikipedia 2021



• Spatially structured

• For example: modeling COVID-19 and influenza, 

Zika, Ebola…

• Model heterogeneity by using travel data

• But assume homogeneity at ‘right’ granularities

[2] Metapopulation Models

Similarly, 𝑌eff

and 𝑍eff



• Written in terms of 𝑋eff, 𝑌eff, 𝑍eff

Metapopulation Models contd.



But… Human contact patterns 
are not random

Rodríguez, Kamarthi, and Prakash 2021 51

Source: Mi Jin Lee at petterhol.me



• Many recent studies on this topic

How to Capture Them? 
Example: Using Call Data Records

[Oliver et al, Sci. Adv. 2020]

#trips #contacts
#raw data



• Apple (maps/directions)

• Google (location history)

• Facebook (using high resolution imagery)

• Safegraph (poi access)

• Cubeiq (mobile phones etc)

• ….

Numerous COVID-19 examples



[3] Agent-based networked models

• Each individual is an agent in a simulation

• Disease spread over contact networks 

• Model heterogeneous interactions between agents 

• Concepts:

• Social contact networks

• Twin cities



• For individuals in a population 
• Demographics (who)

• Sequences of their activities (what)

• Times of their activities (When)

• Places/locations of their activities (where)

• Reasons for their activities (Why)

• No explicit datasets available

• Synthesize multiple datasets and domain knowledge

• Can model behavioral changes as well 

First principles Approach for 
Constructing Social Contact Networks

[Marathe and Vullikanti, CACM 2013]



First principles Approach for 
Constructing Social Contact Networks

92     COMMUNI CATIONS OF THE ACM    |   J ULY 2013  |   VOL. 56  |   NO. 7

r eview ar t icles

either survey data or data collected us-

ing sensors,31,41 and use of Landscan 

data in conjunction with census and 

other sources of population informa-

tion to construct resolved networks 

that are not as accurate but can be 

constructed easily for several cities as 

well as countries.23,30 Note that the gen-

eral approach is extensible to develop 

other kinds of affi l iation networks, for 

example, individuals visiting a website 

or using a resource. Moreover, indi-

vidual agents can be animals, devices, 

or digital objects. Finally, other attri -

butes can be assigned to individuals 

so as to study other dynamic processes 

(assigning cellphones or demand for 

electricity). See supplementary infor-

mation44 for examples.

Step 4 is usually done in close coor-

dination with biologists, epidemiolo-

gists, and statisticians. Computation-

ally, this is naturally represented as a 

finite state probabilistic timed transi -

tion system; this is a finite state ma-

chine wherein certain transitions are 

timed and probabilistic. New methods 

statistical mechanics to show that 

the threshold for epidemics propaga-

tion is 0 in scale-free network models, 

under mean-field assumptions, that 

is, no matter how small the probabil -

i ty of infection is, there would be a 

large outbreak. There are two settings 

for which rigorous results are known 

without the use of any mean-field as-

sumptions. One is the Chung-Lu mod-

el,12 which is a random graph model in 

which the probabili ty of an edge (i , j) 

is proportional to wi · wj , for a given 

weight sequence w. The other is class-

es of expander graphs.1

Computational Models

We outline here a general computa-

tional approach for networked epide-

miology. The first practical and urban-

scale application of this approach was 

described in Eubanks et al.21 It consists 

of six broad steps (see “Computational 

Epidemiology over Networks"). Here, 

we discuss Steps 1–5; Step 6 will be de-

tailed later. Please refer to the supple-

mentary information 44 for details.

Steps 1–3 synthesize a realistic so-

cial contact network of the region un-

der consideration (See Figure 3). Note 

that it is impossible to build synthetic 

urban-scale social contact networks 

solely by collecting field data, al-

though such data can be incorporated 

into the synthetic population creation 

process. The networks so constructed 

are quite different structurally than 

those produced by simple random 

graph techniques.5,22 Interesting simi-

lari ties as well as differences among 

urban regions can be found in Barrett.5 

Recently, researchers have included 

other forms of data and information 

to extend the basic methodology de-

scribed here. Examples include: using 

information from airline data to con-

struct network-based representations 

of cities across the globe—each node 

corresponds to a city and the weight 

of each edge corresponds to the num-

ber of travelers that go between the 

two cities as measured by air transport 

data;13 representation of smaller sub-

networks (aka micro-networks), using 

Figure 3. The main steps in the first principles-based construction of synthetic populations and social contact net works.

Step 1 constructs a synthetic population by using various commercial and open source databases. Step 2 

assigns daily activities to individuals within a household using activit y and time-use sur veys5,21 as well as 

information available from social media. Step 3 constructs a dynamic social bipar tite visitation net work, 

represented by a (vertex and edge) labeled bipar tite graph GPL, where P is the set of people and L is the 

set of locations. (I mage cour tesy of Rachel Robinson.)
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Example: COVID-19 in MA

[Aleta et al, Nature Human Behavior 2020]



• Estimate parameters
• Beta, delta, initial conditions 

• Typical data includes 
• Time-series of new cases from surveillance

• Lots of data problems (missing data, biases, lags)

• For example for COVID-19
• Calibration on infected cases is unlikely to be robust

• On mortality and hospitalizations likely to be better 

Calibration of Mechanistic Models



• Ranges of parameters

• From epidemiological data

• Try to model uncertainty in the data

• Multiple stochastic calibrations

Typically



• Workhorse of epidemiology

• Many success stories over 100 years

• Easy to extend and build (e.g. see COVID-19 work)

• Good numerical solvers exist

• Some can also be handled analytically

• Long history of ODE and Dynamical theory

• See Strogatz: Nonlinear Dynamics and Chaos

• Useful to get intuition and some broad principles

• More qualitative rather than quantitative

Pros/Cons Mechanistic Models



• Sometimes does not reflect reality

• SARS example

• High R0 (2.2-3.6) 

• Estimates were based on hospital wards, where full mixing was 

reasonable

• Calibration is challenging

• Small deviations in parameters can lead to very different 

results

Pros/Cons contd.



Remarks

• A lot more to say about mechanistic models

• Only reviewed some concepts and models

• Other resources:

• N. Dimitrov and L. Meyers. 2010. Mathematical 
approaches to infectious disease prediction and control. 
INFORMS, 1–25

• H. Hethcote. 2000. The mathematics of infectious 
diseases. SIAM review 42, 4 (2000), 599–653

• M. Marathe and A. Vullikanti. 2013. Computational 
epidemiology. Commun. ACM 56, 7 (2013), 88–96.



Part 3: Statistical Models



Statistical Models

• Also known as phenomenological models.

• Intuition:
• Find the best function from a family of functions that approximate 

forecast target given input data.

• Best approximate is found using 
past training data.

• Modeling approaches:
1. Regression models

2. Language models

3. Neural models

4. Density estimation models



[1] Regression Models

• Assume a linear relationship between input 

features and future forecast

• The features x can be high-dimensional set of 

multi-modal features

• Eg: Past values of epidemic curve (called 

AutoRegressive models), Search query volumes , word 

occurrence in text, etc.



AutoRegressive Models

• Use past values of epidemic cures as features to 
predict future values

• Eg:

• We can also add difference between values as 
features (like in ARIMA)



Google Flu Trends

• Simple linear model for nowcasting ILI

• Use search logits of query fractions as features

logit(P) = β0 + β1⇥logit(Q) + ε

High-impact work, media 
coverage

[Ginsberg+ 2009 Nature]



However,…

• Didn’t capture changing trends in keyword 

correlates, i.e. didn’t handle data drift

• Failed to capture H1N1 pandemic, overestimate 

2012-13 season



ARGO

• ARGO: AutoRegression with Google search data

• Auto Regressive: past N ILI values are used

• Uses separate variables for multiple search queries

• Search data: Of current time t

[Yang+ 2017 SR]



ARGO2

• Simultaneously predict HHS and national level ILI

• Capture interdependencies across regions

• Step 1: Region-level independent prediction

• Step 2: Refining prediction using increments modelled 
as multi-variate Gaussian with inter-region covariates

[Ning+ 2019 Sci. Reports]



[2] Language models: using Tweets 
to forecast H1N1 pandemic

• Topic modelling approach

• Cluster tweets

• Combines

• Information propagation on Twitter

• Epidemiological model

[Chen+ ICDM ‘17]



States of infection cycle

• Model states of infection cycle using tweets



Forecasting

• Hidden states model flu-state (SEIR)

• Learn topic model that

• models vocabulary for hidden state and

• transition probabilities across states



HFSTM Model

• Generating tweets

• Generate state for tweet

• Generate topic for word

S: goodThis restaurant is really

E: Themovie
was

good
but it

was
freezing

I: I thinkI have flu

Topic: [Background,
Non-flu,
State]

State: [S,E,I]

Use EM Algorithm for 
learning parameters



Online interactive example



[3] Neural Models

• Why deep learning? 

• Capture non-linear patterns in high-dimensional data 

with minor assumptions

• Flexible learning of rich representations

• Leverage multiple sources of data of variety of 

modalities

• Composite signals are challenging for calibration

• E.g. %ILI is a mix of multiple flu strains and others



Modeling considerations for neural 
models

A
sp

e
ct

C
h
a
lle

n
g
e
s

DISEASE 
SPREAD

DATA UTILIZATION

Uncertainty 
quantification

Spatial 
Transmission

Mobility

Mask 
adoption

Social 
distancing

Anomalies

Data 
revisions

Sparse data

Actionable forecasts

? Interpretability



Modeling ideas

1. Model temporal dynamics via similarity

• Overcome data sparsity

• Enable interpretability

2. Transfer knowledge representations

• Learn from other relevant domains

3. Incorporate spatial structure

• Model the spread over adjacent regions

• Propagation over networks



• Idea: Dynamic deep clustering for 

prediction with limited data

Modeling idea 1: Model temporal 
dynamics via similarity



Model temporal dynamics via 
similarity CONTD.
• Idea: Dynamic deep clustering for 

prediction with limited data



Model temporal dynamics via 
similarity CONTD.
• Idea: Dynamic deep clustering for 

prediction with limited data



Find similarity to historical seasons

• Embed the historical seasons to capture the similarity with 
the current season

• Current season is observed only till week t

• Use snippets of historical seasons till week t to learn 
embedding

Historical seasonsCurrent season

t t t t



Data-driven approach: EpiDeep
• Deep approach for 

forecasting ILI based on 

historical data

• Forecasts multiple targets

• One of the first deep 

learning-based approach for 

influenza forecasting

• Performs pretty well in real-

time forecasting

[Adhikari+, KDD’19]



Experiments: Baselines

• EB: an empirical Bayesian approach. [Brooks+, PLOS ComBio
2015 ]

• published and publicly available version

• ARIMA: an auto-regressive method for making 
predictions on time-series data.

• HIST: historical average of all previous seasons.

• KNN: selects the top k closest historical seasons to 
the current season, and make predictions on their 
average. [Nsoesie+, Stats Com in Infectious Dieases 2011]

• LSTM: a version of [Venna+, IEEE Access 2017] without climate 
and geographical data. 



• How well does EPIDEEP perform in different 

tasks for the national region?

Performance: National Region

Future Incidence Peak Intensity Peak Week Onset

EpiDeep outperforms baselines in most 
settings.

Lower is 

better



Other examples of modeling 
temporal similarity 

• Temporal and geo. similarity (adjacent regions)

• Inter-series similarity

[Wang et al., BigData 2020]

[Jin et al., SDM 2021]



• Epidemiological experts may notice unideal behavior 
exhibited by statistical approaches

• How to enforce epidemic forecasting models to incorporate 
expert’s guidance to show desirable properties?

Detour: Incorporating guidance in 
Epidemic Forecasting

Christmas 
dip

Smoothness

Urban 
areas

Good
surveillance

Good 
Forecasting

Rural
areas

Bad 
surveillance

Bad 
Forecasting

Regional Equity

Often over
corrected

[Rodríguez+, epiDAMIK @ KDD 2020]



Modeling idea 2: Transfer 
knowledge representations

• Neural model automatically learn what to transfer

• Not everything is relevant! Needs selection

• Examples:

• From one country to another country

• Even in different continents 

• In Panagopoulos et al., AAAI 2020

• From a historical scenario to a novel scenario

• From pre-COVID flu to COVID-contaminated flu counts

• In Rodríguez et al., AAAI 2020



Influenza Surveillance in the Early 
COVID Pandemic

Region 2 (NY)

Region 10 (WA)

Epidemiological Week 
(EW)

• March 2020:

• Flu counts are syndromic (symptomatic)

• COVID-Flu are symptomatic similar 

• COVID was being captured by flu surveillance systems

ILINet surveillance network



A Novel Forecasting Setting

• Influenza counts may be 
affected by

• COVID “contamination”

• Shift in healthcare seeking 
behavior

• This new scenario lead us 
a novel forecasting 
problem

• Historical flu models unable 
to adapt to new trends

Historical ILI 
Forecasting 
Models



New COVID-related signals correlate 
with new trends
• Line-list based

• Testing

• Crowdsourced

• Mobility

• Exposure

• Social Media surveys

Correlate 
well with 
new 
trends



Attentive transfer learning for 
heterogeneous domains

Historical flu model

COVID-ILI model

• CALI-Net: steer a historical flu model (EpiDeep, 

KDD 2019) with new COVID-related signals

[Rodríguez+, AAAI 2021]



Modeling idea 3: Incorporate spatial 
structure

• Pathogens propagate to adjacent regions

• And then to new adjacent regions

• Propagation over spatial graphs



Graph message passing for spatial 
propagation

• ColaGNN: 

• Graph neural network for spatial structure 

• Dilated convolution for temporal modeling

[Deng+, CIKM 2020]



[4] Density Estimation Models

• Directly model the forecast distribution

• Parametric: parameters of distribution as function of 

features 

• Non-parametric: Function of training datapoints 

leveraging similarity 



Empirical Bayes

• Idea: Current season’s epidemic curve is a probabilistic 
distribution of features

• Model parameters:

• Similarity is shape to past sequences

• Peak height, week

• Scaling factor of the curve

• All modelled as priors of forecast distribution

• Use Bayesian Inference to calibrate for current season

[Brooks+ 2015 PLoS]



Delta Density

• Use kernel density estimation to leverage similarity with 

historical seasons

• One of the top models in Flusight 2017 challenge

[Brooks+ 2017 PLoS]



Gaussian Process

• Used Gaussian Process over incidence values of previous 

seasons

• Showed reasonable confidence intervals and state-of-art 

log score over past models

[Zimmer+ 2019 ICML]



Neural models for calibrated 
forecasts

• Density Estimation models don’t focus on well-

calibrated forecasts

• Can’t adapt to provide reliable forecast uncertainty on 

novel patterns

Wrong 
Overconfident 
prediction 

Mean is close 
to ground 
truth



EpiFNP: Neural non-parametric 
model for better calibration

• Leverage Neural Sequential models to capture long 

term sequential patterns

• Non-parametric Gaussian Process

• Flexibly model forecast distribution

• Leveraging similarities with past historical sequences

Deep Sequential 
Models

Accurate and 
Well-calibrated 

neural 
forecasting 

model



EpiFNP: Architecture
[Kamarthi+, NeurIPS 2021]

Sequential representations + 
neural Gaussian processes



Results

Well calibrated 
predictions

Novel 3rd

peak

Adapt to novel patterns Explaining predictions

Most similar seasons 
chosen by EpiFNP



• State of the art in multiple forecasting tasks

• Short-term forecasting

• Uncertainty quantification

• Bring a complementary perspective closer to data

• Unaware of epidemic spread mechanisms

• Poor performance in long-term

• Unable of evaluating what-if scenarios

Pros/Cons Statistical Models



Part 4: Hybrid Models



Hybrid Models

• Use both mechanistic and statistical components 

as complementary pieces.

• Modeling approaches:

1. Discrepancy modeling

2. Parameter estimation



[1] Discrepancy modeling

• Statistical model resolves the discrepancies 

between a model (often mechanistic) and ground 

truth data.

• In other words, statistical model 

refines/corrects another model.



Hierarchical Bayesian Model for 
Mechanistic Discrepancy

Figure credit: Sara Del Valle, LANL

• DBM refines mechanistic predictions with a 

hierarchical Bayesian model.

[Osthus et al. 2019, Bay. Analysis]

• Refinement 

components:

• State-specific 

deviation

• Season-specific 

deviation

• Trends



[2] Parameter estimation

[Qian+ NeurIPS 2020]

• Hierarchical two-layer 

Gaussian process (GP).

• Upper-layer GP uses 

country-specific  

features + policies in 

place to estimate 𝑅0

• Lower-layer GP refines 

predictions

Mechanistic 
model

𝑅0 estimation

Refinement



Counterfactual based on new set of 
policies



Part 5: Ensembles



Ensembles

• Combining models into an "ensemble" often 

provides more robust forecasts than any single 

model

• Consistently found across multiple epidemic 

forecasting efforts 

• Flu: Reich et al. 2019, PLOS Comp Bio

• Dengue: Johansson et al. 2019, PNAS

• Ebola: Viboud et al. 2018, Epidemics



Policy makers needed >1 model
Early April 2020

Slide credit: Nicholas Reich, UMass Amherst



Diversity of COVID-19 models

Slide credit: Nicholas Reich, UMass Amherst



What is the optimal ensemble?

• Takeaway: use a robustly trained ensemble
Slide credit: Nicholas Reich, UMass Amherst



Results in COVID-19
[Craemer+, medRxiv 2021]



All models are useful

• No model is always good

• Top models in COVID Forecast Hub:

• Mechanistic

• Statistical

• Usefulness may depend on

• Epidemic stage: uptrend, downtrend, near peak

• Geographical region

• But largely an open research question



Super-ensembles
[Adiga+, medRxiv 2021]



Part 6: Epidemic Forecasting in 
Practice



Epidemic Forecasting Pipeline



Forecasting in Practice

• Topics:

1. US CDC initiatives

2. Real time experiences

3. Decision making



[1] Forecasting Initiatives

• CDC’s Epidemic Prediction Initiative

• 2014-2020 Influenza – US National

• 2015 Dengue – Iquitos, Peru & San Juan, PR

• 2015-2020 Influenza – US HSS Regions

• 2017-2019 Influenza hospitalizations – US National

• 2017-2020 Influenza – US States

• 2019-2020 Ae. aegypti & Ae. Albopictus mosquitoes – US 
counties

• 2019-2020 Department of Defense Influenza – US military 
facilities

• 2020 West Nile neuroinvasive disease – US counties

Slide credit: Matt Biggerstaff, US CDC



COVID-19 Forecast Hubs

Source: Johannes Bracher, KIT Karlsruhe and HITS Heidelberg



Standardization efforts of real-time 
forecast submissions



[2] Real-time Experience and 
Challenges



Operational Deep Learning 
Framework [Rodríguez+, IAAI 2021]



Highlights of results
Capture finer-grain patternsAnticipate Trend Changes

Excels in short-term 

forecasting

Lower is 

better

Provides explanations

Main epidemic 
driver: mobility



Top Ranked Model

• Cramer et al. evaluated model predictions 

submitted to the CDC.

• Evaluation:

• 1 to 4 week ahead

• May 2020 - Oct 2021 (1+ year)

• 51 locations (national + states)

• DeepCOVID ranked top 5 out of 25 

individual models. 

External 
evaluation



(C1) Multiple data sources and formats
• Format varies over time

(C2) Select signals with epidemiological significance

(C3) Temporal misalignment 
• Delays, pause in reporting, differ in granularity

(C4) Spatial misalignment
• Differ in granularity: county vs state vs national

(C5) Data quality and missing data
• Noisy and unreliable for some states

• New hospitalizations (target) is not reported by all states

Data Challenges: Don't 
Underestimate!



Data Quality issues: Data Revisions

Revision of mortality for 
TX released on week 28

Mortality finally stabilize 
to around 400 at week 
28+24 = week 52 !

Human error, data 
instability, delays, 
disasters

Stability Time = 24 weeks

Backfill Error = 
|404-223|/|404|=
44.8%

Initial/real-time 
value = 223



Data revisions are significant

• Over half the signals show backfill error over 32%

• Targets revised by 5%

• Stability time average around 3-4 weeks

Average Backfill Error 
across feature types



Model performance is affected by 
data revision

Model Prediction

Model Prediction

Initial (real-time) 
target

Stable label

Not same!



Refining predictions due to backfill

Given
• Bseqs of all past signals from 

all regions
• History of model’s predictions 

due to training on real-time 
data

• Model’s current week’s 
prediction

Output
• Refined current week 

prediction of model that is 
closer to (unknown) revised 
target

Current week 
prediction

Refined 
Prediction



Back2Future

• Learns from past revision patterns of all features

• Refines model predictions of any model given 

prediction history



Back2Future: Results

• Improves predictions of top-models by 6.65% with 

over 10% in some US states

Takeaway: data quality 
issues can be helped 

with statistical correction



Demo Link: https://github.com/AdityaLab/Back2Future



[3] Decision making

• Leverage predictions to inform decision making for 

policymakers, public health workers, supply 

chains, etc.

• Types:

• Strategic: Large-scale policies

• Tactical: Small-scale, high density action space, to 

accomplish a narrow goal



Strategic Interventions for 
mitigating foot and mouth disease

• Use simulations based on past outbreak data.

• Control measures:

• Vaccinate animals

• Cull farm animals

• Can be solved as Sequential Decision making 

problem (leverage Reinforcement Learning)

[Probert+ PloS 2018, RS 2019]



Tactical Interventions for ventilator 
allocation

• Bertsimas et al. (2021) leverage future case 

forecasts to model optimal resource-allocation

• Tradeoff:

• Satisfy future demand for ventilators

• Reduce inter-state transport cost



Final Remarks



[1] All models are useful

• We have provided a toolkit of methods

• Ensembles are often the most robust

• Mechanistic often better for qualitative insights 

rather than quantitative accuracy

• Especially agent-based models

• Statistical models have SOTA performance in 

multiple short-term forecasting tasks

• Hybrid models are gaining traction 



• When and where did the outbreak start? Who got 
infected? 

• Requires accurate and timely data from the ground

• Reports from public health agencies e.g. CDC, WHO, 
PAHO,…

• Very challenging!

[2] Asking when, where, who



• What to expect as it is spreading? What kinds of people 
are likely to get infected? When will it peak? 
• Many outbreaks die out on their own

• Need data plus models to understand how the disease will 
spread 
• Roles: short term, long term prediction vs understanding

• Conflicting goals: accuracy, transparency, flexibility 

• Important objective: forecast how the outbreak will 
spread for resource planning and decision making
• Many ‘forecasting challenges’ recently ! E.g. flu, COVID etc.

• How big will the peak be?

• When will it peak? 

• Public Communication 

[3] Asking What, When?

Data + Models + 
Efficient Algorithms + 

Simulations



• Editorial, Fineberg and Harvey, Science, May 2009: 

Epidemics Science in Real-Time 

• Five areas: 

• Pandemic risk, 

• vulnerable populations, 

• available interventions, 

• implementation possibilities 

• pitfalls, and public understanding

Studying epidemics in real time



Studying epidemics in real time

• Modeling Before the 
epidemic

1. Determine the 
(non)medical 
interventions required,

2. feasibility of containment

3. optimal size of stockpile

4. best use of 
pharmaceuticals once a 
pandemic begins 

• Modeling After/During 
the epidemic

1. Quantifying transmission 
parameters, 

2. Interpreting real-time 
epidemiological trends,

3. measuring antigenic shift 

4. assessing impact of 
interventions. 

Data Science is 
very important 
for all of these! 



• IN ADDITION to increasing data collection:

• Questions about epidemic spread naturally have a large 

spatial and temporal scale 

• And multiple such scales!

• Small and big data, noisy and incomplete

• New tools can help epidemiologists 

• New data science and AI techniques which can handle 

end-to-end learning

• New Stochastic optimization techniques

Why data science?



ML & 
Stats.

Comp. 
Systems

Theory 
& 

Algo.

Biology

Econ.

Social 
Science

Physics

Data Science 
for 

Epidemiology

Big 
Picture



Reminder on Workshop Webpage

• https://adityalab.cc.gatech.edu/workshops/21-
forecasting-f4sg.html or b.gatech.edu/3cBPfQ7

• All Slides will be posted there.

• Talk video as well (later).

• License: for education and research, you are 
welcome to use parts of this presentation, for free, 
with standard academic attribution. For-profit usage 
requires written permission by the authors. 

https://adityalab.cc.gatech.edu/workshops/21-forecasting-f4sg.html
https://t.co/SiV2hmAlZd?amp=1


Stay tuned

• Survey paper coming soon

• Epidemiology meets Data Science Workshop

• https://epidamik.github.io/

• Hosted at KDD 2021

• And more exciting research and tools!



Disciplines

Scales

We recently organized the National PREVENT 
symposium (Feb 22/23): Cross-cutting disciplines 
and scales for pandemic prevention and prediction

Videos and handouts: prevent-symposium.org



Thanks!
• To F4SG for the 

invitation

• CDC COVID-19 

Forecasting Hub

• Data collection 

volunteers

• Collaborators

• Funding agencies

Stay in touch!
Alexander Rodríguez
• email: arodriguezc@gatech.edu 
• web: cc.gatech.edu/~acastillo41

Harsha Kamarthi
• email: hkamarthi3@gatech.edu 
• web: www.harsha-pk.com/

B. Aditya Prakash
• email: badityap@cc.gatech.edu 
• web: cc.gatech.edu/~badityap/

@arodriguezca

@harsha_64

@badityap

Fill survey: https://forms.gle/5JuSSTQde8FV3PVq9 


